ZHCSCL6 July   2014 TPS2105-EP

PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
    1. 5.1 Function Table
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Switches
        1. 7.3.1.1 N-Channel MOSFET
        2. 7.3.1.2 P-Channel MOSFET
        3. 7.3.1.3 Charge Pump
        4. 7.3.1.4 Driver
        5. 7.3.1.5 Enable
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation With EN Control
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Step-by-Step Design Procedure
        2. 8.2.2.2 Power-Supply Considerations
        3. 8.2.2.3 Switch Transition
        4. 8.2.2.4 Thermal Protection
        5. 8.2.2.5 Undervoltage Lockout
        6. 8.2.2.6 Power Dissipation and Junction Temperature
        7. 8.2.2.7 ESD Protection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
  11. 11器件和文档支持
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 术语表
  12. 12机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range from 2.7 to 5.5 V. A 0.22-μF ceramic bypass capacitor is needed between IN and GND; TI recommends placing the capacitor close to the device. The output capacitor should be chosen based on the size of the load during the transition of the switch. TI recommends a 220-μF capacitor for 100-mA loads. Adding a 1-μF ceramic bypass capacitor at the output can help to improve the immunity of the device to short-circuit transients.

TPS2105-EP requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor. The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature. The output capacitor must also be selected with the DC bias taken into account. Ceramic capacitors lose capacitance when a DC bias is applied across the capacitor. This capacitance loss is due to the polarization of the ceramic material. The capacitance loss is not permanent; after a large DC bias is applied, reducing the DC bias reduces the degree of polarization and capacitance increases. The capacitance value of a capacitor decreases as the DC bias across a capacitor increases.

All tantalum capacitors have tantalum (Ta) particles sintered together to form an anode. The cathode material can either be the traditional MnO2 or a conductive polymer. Because MnO2 is actually a semiconductor, it has a very high amount of resistance associated with it. A characteristic of this material is that as temperature changes, so does its conductivity. So MnO2-based Tantalum capacitors have relatively high ESR and that ESR shifts significantly across the operational temperature range.

However, polymer-based cathodes use a highly-conductive polymer material. Because the material is inherently conductive, tantalum-polymers have a relatively-low ESR compared to their MnO2 counterparts in the same voltage and capacitance ranges.

All tantalum capacitors have a voltage derating factor associated with them. Because the polymer material puts less stress on the tantalum-pentoxide dielectric during reflow soldering, more voltage can be applied compared to a MnO2-based tantalum. For polymer-based capacitors, TI recommends 20% derating. Whereas the MnO2-based tantalum capacitors require 50% or higher derating. Refer to the capacitor vendor data sheet for more details regarding the derating guidelines.