6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
|
MIN |
MAX |
UNIT |
VI(IN1) |
Input voltage(2) |
–0.3 |
6 |
V |
VI(IN2) |
Input voltage(2) |
–0.3 |
6 |
V |
|
Input voltage, VI at EN(2) |
–0.3 |
6 |
V |
VO |
Output voltage(2) |
–0.3 |
6 |
V |
IO(IN1) |
Continuous output current |
|
700 |
mA |
IO(IN2) |
Continuous output current |
|
140 |
mA |
|
Continuous total power dissipation |
See Thermal Information |
|
TJ |
Operating virtual junction temperature |
–55 |
150 |
°C |
|
Lead temperature soldering 1.6 mm (1/16 inch) from case for 10 s |
|
260 |
°C |
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND.
6.2 Handling Ratings
|
MIN |
MAX |
UNIT |
Tstg |
Storage temperature range |
–65 |
150 |
°C |
V(ESD) |
Electrostatic discharge |
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) |
–2000 |
2000 |
V |
Machine model (MM) ESD stress voltage |
–200 |
200 |
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) |
–750 |
750 |
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
|
MIN |
MAX |
UNIT |
VI(INx) |
Input voltage |
2.7 |
5.5 |
V |
|
Input voltage, VI at EN |
0 |
5.5 |
V |
IO(IN1) |
Continuous output current |
|
500 |
mA |
IO(IN2) |
Continuous output current |
|
100(1) |
mA |
TJ |
Operating virtual junction temperature |
–55 |
125 |
°C |
(1) The device can deliver up to 220 mA at IO(IN2). However, operation at the higher current levels results in greater voltage drop across the device, and greater voltage droop when switching between IN1 and IN2.
6.4 Thermal Information
THERMAL METRIC(1) |
TPS2105-EP |
UNIT |
DBV (5 PINS) |
RθJA |
Junction-to-ambient thermal resistance |
208.7 |
°C/W |
RθJC(top) |
Junction-to-case (top) thermal resistance |
122.9 |
RθJB |
Junction-to-board thermal resistance |
36.7 |
ψJT |
Junction-to-top characterization parameter |
14.2 |
ψJB |
Junction-to-board characterization parameter |
35.8 |
RθJC(bot) |
Junction-to-case (bottom) thermal resistance |
N/A |
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report,
SPRA953.
6.5 Electrical Characteristics
Over recommended operating range (unless otherwise specified)
PARAMETER |
TEST CONDITIONS |
MIN |
TYP |
MAX |
UNIT |
POWER SWITCH |
rDS(on) |
On-state resistance |
IN1-OUT, VI(IN1) = 5.5 V, VI(IN2) = 0 V |
|
250 |
435 |
mΩ |
IN2-OUT, VI(IN2) = 5.5 V, VI(IN1) = 0 V |
|
1.3 |
2.4 |
Ω |
ENABLE INPUT |
VIH |
High-level input voltage |
2.7 V ≤ VI(INx) ≤ 5.5 V |
2 |
|
|
V |
VIL |
Low-level input voltage |
2.7 V ≤ VI(INx) ≤ 5.5 V |
|
|
0.8 |
V |
II |
Input current |
EN = 0 V or EN = VI(INx) |
–0.65 |
|
0.65 |
µA |
SUPPLY CURRENT |
II |
Supply current |
EN = L, IN2 selected |
|
0.75 |
1.5 |
µA |
EN = H, IN1 selected |
|
18 |
35 |
µA |
6.6 Switching Characteristics
TJ = 25°C, VI(IN1) = VI(IN2) = 5 V (unless otherwise noted)
PARAMETER |
TEST CONDITIONS |
MIN |
TYP |
MAX |
UNIT |
tr |
Output rise time |
IN1-OUT |
VI(IN2) = 0 |
CL = 1 µF, IL = 500 mA |
|
340 |
|
µs |
CL = 10 µF, IL = 500 mA |
|
340 |
|
CL = 1 µF, IL = 100 mA |
|
312 |
|
IN2-OUT |
VI(IN1) = 0 |
CL = 1 µF, IL = 100 mA |
|
3.4 |
|
CL = 10 µF, IL = 100 mA |
|
34 |
|
CL = 1 µF, IL = 10 mA |
|
3.5 |
|
tf |
Output fall time |
IN1-OUT |
VI(IN2) = 0 |
CL = 1 µF, IL = 500 mA |
|
6 |
|
µs |
CL = 10 µF, IL = 500 mA |
|
108 |
|
CL = 1 µF, IL = 100 mA |
|
8 |
|
IN2-OUT |
VI(IN1) = 0 |
CL = 1 µF, IL = 100 mA |
|
100 |
|
CL = 10 µF, IL = 100 mA |
|
990 |
|
CL = 1 µF, IL = 10 mA |
|
1000 |
|
tPLH |
Propagation delay time, low-to-high output |
IN1-OUT |
VI(IN2) = 0 |
CL = 10 µF, IL = 100 mA |
|
55 |
|
µs |
IN2-OUT |
VI(IN1) = 0 |
|
1 |
|
tPHL |
Propagation delay time, high-to-low output |
IN1-OUT |
VI(IN2) = 0 |
CL = 10 µF, IL = 100 mA |
|
1.5 |
|
µs |
IN2-OUT |
VI(IN1) = 0 |
|
50 |
|
Figure 2. Test Circuit and Voltage Waveforms
6.7 Typical Characteristics
VI(IN1) = 5 V |
VI(IN2) = 0 V |
TJ = 25°C |
|
|
|
Figure 3. IN1 Switch Rise Time vs Output Current
VI(IN1) = 5 V |
VI(IN2) = 0 V |
TJ = 25°C |
|
|
|
Figure 5. IN1 Switch Fall Time vs Output Current
VI(IN1) = 5 V |
VI(IN2) = 5 V |
TJ = 25°C |
If switching from IN1 to IN2, the voltage droop is much smaller. |
Thus, choose the load capacitance according to Figure 6. |
Figure 7. Output Voltage Droop vs Output Current When Output is Switched from IN2 to IN1
Figure 9. IN1 Supply Current vs Junction Temperature
(IN1 Enabled)
Figure 11. IN2 Supply Current vs Junction Temperature (IN2 Enabled)
Figure 13. IN1-Out On-State Resistance vs Junction Temperature
VI(IN1) = 0 V |
VI(IN2) = 5 V |
TJ = 25°C |
|
|
|
Figure 4. IN2 Switch Rise Time vs Output Current
VI(IN1) = 0 V |
VI(IN2) = 5 V |
TJ = 25°C |
|
|
|
Figure 6. IN2 Switch Fall Time vs Output Current
VI(IN1) = 5 V |
VI(IN2) = 0 V |
RL = 10 Ω |
TJ = 25°C |
|
|
|
|
|
Figure 8. Inrush Current vs Output Capacitance
Figure 10. IN1 Supply Current vs Junction Temperature
(IN1 Disabled)
Figure 12. IN2 Supply Current vs Junction Temperature (IN2 Disabled)
Figure 14. IN2-Out On-State Resistance vs Junction Temperature