ZHCSJU6C March   2019  – October 2019 TPS23881

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. 器件比较表
  6. 引脚配置和功能
    1.     引脚功能
    2. 6.1 详细引脚 说明
  7. 规格
    1. 7.1 绝对最大额定值
    2. 7.2 ESD 额定值
    3. 7.3 建议运行条件
    4. 7.4 热性能信息
    5. 7.5 电气特性
    6. 7.6 典型特性
  8. 参数测量信息
    1. 8.1 时序图
  9. 详细 说明
    1. 9.1 概述
      1. 9.1.1 工作模式
        1. 9.1.1.1 自动
        2. 9.1.1.2 自主
        3. 9.1.1.3 半自动
        4. 9.1.1.4 手动/诊断
        5. 9.1.1.5 关闭
      2. 9.1.2 通道 与端口 技术
      3. 9.1.3 请求的 分级与分配的 分级
      4. 9.1.4 功率分配和功率降级
    2. 9.2 功能方框图
    3. 9.3 功能 说明
      1. 9.3.1 端口重映射
      2. 9.3.2 端口功率优先级
      3. 9.3.3 模数转换器 (ADC)
      4. 9.3.4 I2C 看门狗
      5. 9.3.5 电流折返保护
    4. 9.4 器件功能模式
      1. 9.4.1 检测
      2. 9.4.2 连接检查
      3. 9.4.3 分级
      4. 9.4.4 直流断开
    5. 9.5 I2C 编程
      1. 9.5.1 I2C 串行接口
    6. 9.6 寄存器映射
      1. 9.6.1 完整寄存器组
      2. 9.6.2 详细的寄存器说明
        1. 9.6.2.1  中断寄存器
          1. Table 5. 中断寄存器字段说明
        2. 9.6.2.2  中断屏蔽寄存器
          1. Table 6. 中断屏蔽寄存器字段说明
        3. 9.6.2.3  电源事件寄存器
          1. Table 7. 电源事件寄存器字段说明
        4. 9.6.2.4  检测事件寄存器
          1. Table 8. 检测事件寄存器字段说明
        5. 9.6.2.5  故障事件寄存器
          1. Table 9. 故障事件寄存器字段说明
        6. 9.6.2.6  启动/ILIM 事件寄存器
          1. Table 10. 启动/ILIM 事件寄存器字段说明
        7. 9.6.2.7  电源和故障事件寄存器
          1. Table 11. 电源和故障事件寄存器字段说明
          2. 9.6.2.7.1 检测到 SRAM 故障和“安全模式”
            1. 9.6.2.7.1.1 ULA(超低阿尔法)封装选项:TPS23881A
        8. 9.6.2.8  通道 1 发现寄存器
        9. 9.6.2.9  通道 2 发现寄存器
        10. 9.6.2.10 通道 3 发现寄存器
        11. 9.6.2.11 通道 4 发现寄存器
          1. Table 12. 通道 n 发现寄存器字段说明
        12. 9.6.2.12 电源状态寄存器
          1. Table 13. 电源状态寄存器字段说明
        13. 9.6.2.13 引脚状态寄存器
          1. Table 14.  引脚状态寄存器字段说明
          2. 9.6.2.13.1 自主模式
        14. 9.6.2.14 工作模式寄存器
          1. Table 16. 工作模式寄存器字段说明
        15. 9.6.2.15 断开使能寄存器
          1. Table 20. 断开使能寄存器字段说明
        16. 9.6.2.16 检测/分级使能寄存器
          1. Table 21. 检测/分级使能寄存器字段说明
        17. 9.6.2.17 功率优先级/2 线对 PCUT 禁用寄存器名称
          1. Table 22. 功率优先级/2P-PCUT 禁用寄存器字段说明
        18. 9.6.2.18 时序配置寄存器
          1. Table 24. 时序配置寄存器字段说明
        19. 9.6.2.19 通用屏蔽寄存器
          1. Table 25. 通用屏蔽寄存器字段说明
        20. 9.6.2.20 检测/分级重启寄存器
          1. Table 27. 检测/分级重启寄存器字段说明
        21. 9.6.2.21 电源使能寄存器
          1. Table 28. 电源使能寄存器字段说明
        22. 9.6.2.22 复位寄存器
          1. Table 32. 复位寄存器字段说明
        23. 9.6.2.23 ID 寄存器
          1. Table 34. ID 寄存器字段说明
        24. 9.6.2.24 连接检查和 Auto Class 状态寄存器
          1. Table 35. 连接检查和 Auto Class 字段说明
        25. 9.6.2.25 2 线对管制通道 1 配置寄存器
        26. 9.6.2.26 2 线对管制通道 2 配置寄存器
        27. 9.6.2.27 2 线对管制通道 3 配置寄存器
        28. 9.6.2.28 2 线对管制通道 4 配置寄存器
          1. Table 36. 2 线对管制寄存器字段说明
        29. 9.6.2.29 电容(传统 PD)检测
          1. Table 39. 电容检测寄存器字段说明
        30. 9.6.2.30 加电故障寄存器
          1. Table 40. 加电故障寄存器字段说明
        31. 9.6.2.31 端口重映射寄存器
          1. Table 41. 端口重映射寄存器字段说明
        32. 9.6.2.32 通道 1 和 2 多位优先级寄存器
        33. 9.6.2.33 通道 3 和 4 多位优先级寄存器
          1. Table 42. 通道 n MBP 寄存器字段说明
        34. 9.6.2.34 4 线对有线和端口功率分配寄存器
          1. Table 44. 4 线对有线和功率分配寄存器字段说明
        35. 9.6.2.35 4 线对管制通道 1 和 2 配置寄存器
        36. 9.6.2.36 4 线对管制通道 3 和 4 配置寄存器
          1. Table 46. 4 线对管制寄存器字段说明
        37. 9.6.2.37 温度寄存器
          1. Table 48. 温度寄存器字段说明
        38. 9.6.2.38 4 线对故障配置寄存器
          1. Table 49. 4 线对故障寄存器字段说明
        39. 9.6.2.39 输入电压寄存器
          1. Table 50. 输入电压寄存器字段说明
        40. 9.6.2.40 通道 1 电流寄存器
        41. 9.6.2.41 通道 2 电流寄存器
        42. 9.6.2.42 通道 3 电流寄存器
        43. 9.6.2.43 通道 4 电流寄存器
          1. Table 51. 通道 n 电流寄存器字段说明
        44. 9.6.2.44 通道 1 电压寄存器
        45. 9.6.2.45 通道 2 电压寄存器
        46. 9.6.2.46 通道 3 电压寄存器
        47. 9.6.2.47 通道 4 电压寄存器
          1. Table 52. 通道 n 电压寄存器字段说明
        48. 9.6.2.48 2x 折返选择寄存器
          1. Table 53. 2x 折返选择寄存器字段说明
        49. 9.6.2.49 固件版本寄存器
          1. Table 54. 固件版本寄存器字段说明
        50. 9.6.2.50 I2C 看门狗寄存器
          1. Table 55. I2C 看门狗寄存器字段说明
        51. 9.6.2.51 器件 ID 寄存器
          1. Table 57. 器件 ID 寄存器字段说明
        52. 9.6.2.52 通道 1 检测电阻寄存器
        53. 9.6.2.53 通道 2 检测电阻寄存器
        54. 9.6.2.54 通道 3 检测电阻寄存器
        55. 9.6.2.55 通道 4 检测电阻寄存器
          1. Table 58. 检测电阻寄存器字段说明
        56. 9.6.2.56 通道 1 检测电容寄存器
        57. 9.6.2.57 通道 2 检测电容寄存器
        58. 9.6.2.58 通道 3 检测电容寄存器
        59. 9.6.2.59 通道 4 检测电容寄存器
          1. Table 59. 检测电容寄存器字段说明
        60. 9.6.2.60 通道 1 分配的分级寄存器
        61. 9.6.2.61 通道 2 分配的分级寄存器
        62. 9.6.2.62 通道 3 分配的分级寄存器
        63. 9.6.2.63 通道 4 分配的分级寄存器
          1. Table 60. 通道 n 分配的分级寄存器字段说明
        64. 9.6.2.64 AUTO CLASS 控制寄存器
          1. Table 63. AUTO CLASS 控制寄存器字段说明
        65. 9.6.2.65 通道 1 AUTO CLASS 功率寄存器
        66. 9.6.2.66 通道 2 AUTO CLASS 功率寄存器
        67. 9.6.2.67 通道 3 AUTO CLASS 功率寄存器
        68. 9.6.2.68 通道 4 AUTO CLASS 功率寄存器
          1. Table 65. AUTO CLASS 功率寄存器字段说明
        69. 9.6.2.69 备用折返寄存器
          1. Table 66. 备用折返寄存器字段说明
        70. 9.6.2.70 SRAM 控制寄存器
          1. Table 67. SRAM 控制寄存器字段说明
        71. 9.6.2.71 SRAM 起始地址 (LSB) 寄存器
        72. 9.6.2.72 SRAM 起始地址 (MSB) 寄存器
          1. Table 68. SRAM 起始地址寄存器字段说明
  10. 10应用和实现
    1. 10.1 应用信息
      1. 10.1.1 自主操作
      2. 10.1.2 PoE 简介
        1. 10.1.2.1 2 线对与 4 线对功率比较以及新的 IEEE802.3bt 标准
      3. 10.1.3 SRAM 编程
    2. 10.2 典型应用
      1. 10.2.1 设计要求
      2. 10.2.2 详细设计过程
        1. 10.2.2.1 未用通道上的连接
        2. 10.2.2.2 电源引脚旁路电容器
        3. 10.2.2.3 每端口的组件
        4. 10.2.2.4 系统级组件(未在原理图中显示)
      3. 10.2.3 应用曲线
  11. 11电源建议
    1. 11.1 VDD
    2. 11.2 VPWR
  12. 12布局
    1. 12.1 布局指南
      1. 12.1.1 开尔文电流检测电阻器
    2. 12.2 布局示例
      1. 12.2.1 组件安置和布线准则
        1. 12.2.1.1 电源引脚旁路电容器
        2. 12.2.1.2 每端口的组件
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 商标
    5. 13.5 静电放电警告
    6. 13.6 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

自主模式

在自主模式下,TPS23881 无需任何 I2C 通信或主机控制即可运行。与在自动模式下一样,当期间在自主模式下运行时,端口将在发现过程中持续循环,并且每当连接有效(检测和分级)PD 时,端口就会自动加电。

如果根据下表在 AUTO 引脚和 GND 之间连接一个电阻器,则会启用自主模式并将所有端口配置为相同的功率分配设置。如果以比自主模式配置更高的请求的分级连接 PD,那么端口会将 PD 降级至所选的自主模式配置功率水平。

Table 15. AUTO 引脚编程

AUTO 引脚 自主模式配置 产生的配置寄存器
0x12h 0x14h 0x29h
断开/悬空 禁用 0000, 0000b 0000, 0000b 0000, 0000b
124kΩ 2 线对 15W 1111, 1111b 1111, 1111b 0000, 0000b
62kΩ 2 线对 30W 1111, 1111b 1111, 1111b 0011 0011b
35.7kΩ 4 线对 30W 1111, 1111b 1111, 1111b 1011 1011b
22.6kΩ 4 线对 45W 1111, 1111b 1111, 1111b 1100, 1100b
15.8kΩ 4 线对 60W 1111, 1111b 1111, 1111b 1101, 1101b
11kΩ 4 线对 75W 1111, 1111b 1111, 1111b 1110, 1110b
7.7kΩ 4 线对 90W 1111, 1111b 1111, 1111b 1111, 1111b

空白

NOTE

需要将一个 10nF 的电容器与 RAUTO 进行并联,以确保自主模式选择的稳定性。

I2C 接口在自主模式下仍可完全正常运行,并且仍支持所有端口遥测和可配置性

器件复位后(寄存器 0x1A 中的 RESET 引脚或 RESAL 位被置位),将不会测量 AUTO 引脚电阻 (RAUTO)。在加电期间(VVPWR 和 VVDD 上升到各自的 UVLO 阈值以上),器件仅会测量 (RAUTO) 和预先配置内部寄存器。

NOTE

需要对器件 SRAM 进行编程,以支持 希望 在最初以自主模式加电后使器件退出自主模式的应用。

RESET 引脚、I2C 寄存器 0x1A RESAL 或 RESPn 位置位或发出模式关闭命令后,从内部 ROM(SRAM 未编程)以自主模式运行的器件将关闭,然后自动恢复发现并为任何有效负载加电。而在自主模式下运行(SRAM 已编程)的器件将关闭并保持不活动状态,直到主机通过 I2C 总线重新启用端口。