ZHCSTM5 October   2023 TPS25730

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
      1. 6.1.1 TPS25730D and TPS25730S - Absolute Maximum Ratings
      2. 6.1.2 TPS25730D - Absolute Maximum Ratings
      3. 6.1.3 TPS25730S - Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
      1. 6.3.1 TPS25730D - Recommended Operating Conditions
      2. 6.3.2 TPS25730S - Recommended Operating Conditions
    4. 6.4  Recommended Capacitance
    5. 6.5  Thermal Information
      1. 6.5.1 TPS25730D - Thermal Information
      2. 6.5.2 TPS25730S - Thermal Information
    6. 6.6  Power Supply Characteristics
    7. 6.7  Power Consumption
    8. 6.8  PPHV Power Switch Characteristics - TPS25730D
    9. 6.9  PP_EXT Power Switch Characteristics - TPS25730S
    10. 6.10 Power Path Supervisory
    11. 6.11 CC Cable Detection Parameters
    12. 6.12 CC PHY Parameters
    13. 6.13 Thermal Shutdown Characteristics
    14. 6.14 ADC Characteristics
    15. 6.15 Input/Output (I/O) Characteristics
    16. 6.16 I2C Requirements and Characteristics
    17. 6.17 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  USB-PD Physical Layer
        1. 8.3.1.1 USB-PD Encoding and Signaling
        2. 8.3.1.2 USB-PD Bi-Phase Marked Coding
        3. 8.3.1.3 USB-PD BMC Transmitter
        4. 8.3.1.4 USB-PD BMC Receiver
        5. 8.3.1.5 Squelch Receiver
      2. 8.3.2  Power Management
        1. 8.3.2.1 Power-On And Supervisory Functions
        2. 8.3.2.2 VBUS LDO
      3. 8.3.3  Power Paths
        1. 8.3.3.1 TPS25730D Internal Sink Path
        2. 8.3.3.2 TPS25730S - External Sink Path Control PP_EXT
      4. 8.3.4  Cable Plug and Orientation Detection
      5. 8.3.5  Overvoltage Protection (CC1, CC2)
      6. 8.3.6  Default Behavior Configuration (ADCIN1, ADCIN2)
      7. 8.3.7  ADC
      8. 8.3.8  Digital Interfaces
      9. 8.3.9  Digital Core
      10. 8.3.10 I2C Interface
        1. 8.3.10.1 I2C Interface Description
          1. 8.3.10.1.1 I2C Clock Stretching
          2. 8.3.10.1.2 Unique Address Interface
          3. 8.3.10.1.3 Pin Strapping to Configure Default Behavior
      11. 8.3.11 Minimum Voltage Configuration
      12. 8.3.12 Maximum Voltage Configuration
      13. 8.3.13 Sink Current Configuration
      14. 8.3.14 Autonegotiate Sink Minimum Power
      15. 8.3.15 Extended Sink Capabilities Power Delivery Power
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power States
    5. 8.5 Schottky for Current Surge Protection
    6. 8.6 Thermal Shutdown
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Supported Sink Power Configurations
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 3.3-V Power
        1. 9.3.1.1 VIN_3V3 Input Switch
      2. 9.3.2 1.5-V Power
      3. 9.3.3 Recommended Supply Load Capacitance
    4. 9.4 Layout
      1. 9.4.1 TPS25730D - Layout
        1. 9.4.1.1 Layout Guidelines
          1. 9.4.1.1.1 Top Placement and Bottom Component Placement and Layout
        2. 9.4.1.2 Layout Example
        3. 9.4.1.3 Component Placement
        4. 9.4.1.4 Routing VBUS, VIN_3V3, LDO_3V3, LDO_1V5
        5. 9.4.1.5 Routing CC and GPIO
      2. 9.4.2 TPS25730S - Layout
        1. 9.4.2.1 Layout Guidelines
          1. 9.4.2.1.1 Top Placement and Bottom Component Placement and Layout
        2. 9.4.2.2 Layout Example
        3. 9.4.2.3 Component Placement
        4. 9.4.2.4 Routing VBUS, PPHV, VIN_3V3, LDO_3V3, LDO_1V5
        5. 9.4.2.5 Routing CC and GPIO
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C Interface Description

The TPS25730 supports Standard and Fast mode I2C interfaces. The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pullup resistor. Data transfer can be initiated only when the bus is not busy.

A controller sending a Start condition, a high-to-low transition on the SDA input and output, while the SCL input is high initiates I2C communication. After the Start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period as changes in the data line at this time are interpreted as control commands (Start or Stop). The controller sends a Stop condition, a low-to-high transition on the SDA input and output while the SCL input is high.

Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a target receiver is addressed, it must generate an ACK after each byte is received. Similarly, the controller must generate an ACK after each byte that it receives from the target transmitter. Setup and hold times must be met to ensure proper operation.

A controller receiver signals an end of data to the target transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the target. The controller receiver holding the SDA line high does this. In this event, the transmitter must release the data line to enable the controller to generate a Stop condition.

Figure 8-20 shows the start and stop conditions of the transfer. Figure 8-21 shows the SDA and SCL signals for transferring a bit. Figure 8-22 shows a data transfer sequence with the ACK or NACK at the last clock pulse.

GUID-E3C50BA6-FF60-4CD6-A72B-FD5FB9D6BB97-low.gifFigure 8-20 I2C Definition of Start and Stop Conditions
GUID-873E20AE-4925-449E-8A6C-5BAA310040E4-low.gifFigure 8-21 I2C Bit Transfer
GUID-20230531-SS0I-ND24-6ZCC-JLQGZK8HJ4ST-low.svg Figure 8-22 I2C Acknowledgment