ZHCSX80 October   2024 TPS25763-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1  绝对最大额定值
    2. 6.2  ESD 等级
    3. 6.3  建议运行条件
    4. 6.4  建议元件
    5. 6.5  热性能信息
    6. 6.6  降压/升压稳压器
    7. 6.7  CC 电缆检测参数
    8. 6.8  CC VCONN 参数
    9. 6.9  CC PHY 参数
    10. 6.10 热关断特性
    11. 6.11 振荡器特性
    12. 6.12 ADC 特性
    13. 6.13 TVSP 参数
    14. 6.14 输入/输出 (I/O) 特性
    15. 6.15 BC1.2 特性
    16. 6.16 I2C 要求和特性
    17. 6.17 典型特性
  8. 参数测量信息
  9. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
    3. 8.3 特性说明
      1. 8.3.1  器件电源管理和监控电路
        1. 8.3.1.1 VIN UVLO 和使能/UVLO
        2. 8.3.1.2 内部 LDO 稳压器
      2. 8.3.2  TVSP 器件配置和 ESD 保护
      3. 8.3.3  外部 NFET 和 LSGD
      4. 8.3.4  降压/升压稳压器
        1. 8.3.4.1  降压/升压稳压器运行
        2. 8.3.4.2  开关频率、频率抖动、相移和同步
        3. 8.3.4.3  VIN 电源和 VIN 过压保护
        4. 8.3.4.4  反馈路径和误差放大器
        5. 8.3.4.5  跨导体和补偿
        6. 8.3.4.6  输出电压 DAC、软启动和电缆压降补偿
        7. 8.3.4.7  VBUS 过压保护
        8. 8.3.4.8  VBUS 欠压保护
        9. 8.3.4.9  电流检测电阻器 (RSNS) 和电流限制运行
        10. 8.3.4.10 降压/升压峰值电流限制
      5. 8.3.5  USB-PD 物理层
        1. 8.3.5.1 USB-PD 编码和信令
        2. 8.3.5.2 USB-PD 双相标记编码
        3. 8.3.5.3 USB-PD 发送 (TX) 和接收 (Rx) 掩码
        4. 8.3.5.4 USB-PD BMC 发送器
        5. 8.3.5.5 USB-PD BMC 接收器
        6. 8.3.5.6 静噪接收器
      6. 8.3.6  VCONN
      7. 8.3.7  电缆插拔和方向检测
        1. 8.3.7.1 配置为源端
        2. 8.3.7.2 配置为接收端
        3. 8.3.7.3 配置为 DRP
        4. 8.3.7.4 过压保护(Px_CC1,Px_CC2)
      8. 8.3.8  ADC
        1. 8.3.8.1 ADC 分压器分压比
      9. 8.3.9  BC 1.2 模式、传统模式和快速充电模式(Px_DP、Px_DM)
      10. 8.3.10 DisplayPort 热插拔检测 (HPD)
      11. 8.3.11 USB2.0 低速端点
      12. 8.3.12 数字接口
        1. 8.3.12.1 常规 GPIO
        2. 8.3.12.2 I2C 缓冲器
      13. 8.3.13 I2C 接口
        1. 8.3.13.1 I2C 接口说明
        2. 8.3.13.2 I2C 时钟延展
        3. 8.3.13.3 I2C 地址设置
        4. 8.3.13.4 唯一地址接口
        5. 8.3.13.5 I2C 上拉电阻计算
      14. 8.3.14 数字内核
        1. 8.3.14.1 器件存储器
        2. 8.3.14.2 内核微处理器
      15. 8.3.15 NTC 输入
      16. 8.3.16 热传感器和热关断
    4. 8.4 器件功能模式
  10. 应用和实施
    1. 9.1 应用信息
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
        1. 9.2.2.1 应用程序 GUI 选择
        2. 9.2.2.2 EEPROM 选择
        3. 9.2.2.3 EN/UVLO
        4. 9.2.2.4 检测电阻器 RSNS、RCSP、RCSN 和 CFILT
        5. 9.2.2.5 电感器电流
        6. 9.2.2.6 输出电容器
        7. 9.2.2.7 输入电容器
      3. 9.2.3 应用曲线
    3. 9.3 电源相关建议
    4. 9.4 布局
      1. 9.4.1 布局指南
      2. 9.4.2 布局示例
  11. 10器件和文档支持
    1. 10.1 文档支持
      1. 10.1.1 相关文档
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 商标
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息
    1.     106

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C 接口说明

I2C1 和 I2C2 端口支持标准模式、快速模式和快速+ 模式的 I2C 接口。双向 I2C 总线由串行时钟 (SCL) 线和串行数据 (SDA) 线组成。这两种线都必须通过上拉电阻器连接至电源。只有当总线处于不忙状态时,才能启动数据传输。

当 SCL 输入为高电平时,控制器将发送启动条件(SDA 输入/输出端由高电平到低电平转换)以启动 I2C 通信。在发送启动条件之后,会发送器件地址字节,首先发送最高有效位 (MSB),包括数据方向位 (R/W)。

接收到有效地址字节后,该器件以确认 (ACK) 响应,在 ACK 相关时钟脉冲的高电平期间,SDA 输入/输出为低电平。在 I2C 总线上,在每个时钟脉冲期间仅传输一个数据位。在时钟周期的高脉冲期间,SDA 线上的数据必须保持稳定,因为此时数据线上的变化会被解释为控制命令(启动或停止)。控制器会发送停止条件,即当 SCL 输入为高电平时,SDA 输入/输出由低电平到高电平转换。

在开始和停止条件之间,可以将任意数量的数据字节从发送器传输到接收器。每个八位字节后跟一个 ACK 位。发送器必须先释放 SDA 线,接收器才能发送 ACK 位。做出应答的器件必须在 ACK 时钟脉冲期间下拉 SDA 线路,这样,在 ACK 相关时钟周期的高脉冲期间,SDA 线路稳定为低电平。当目标接收器被寻址时,它必须在接收到每个字节后生成一个 ACK。类似地,控制器必须在从目标发送器接收到每个字节之后生成一个 ACK。必须满足设置和保持时间以确保正常运行。

控制器接收器通过在目标发送器在时钟沿输出最后一个字节后不进行确认 (NACK),来向目标发送器发送数据结束信号。将 SDA 线保持为高电平的控制器接收器会执行此操作。在这种情况下,目标发送器必须释放数据线,才能使控制器生成停止条件。

图 8-36 显示了传输的启动和停止条件。图 8-37 显示了用于传输一个位的 SDA 和 SCL 信号。图 8-38 显示了在最后一个时钟脉冲具有 ACK 或 NACK 的数据传输序列。

TPS25763-Q1 启动和停止条件的 I2C 定义图 8-36 启动和停止条件的 I2C 定义
TPS25763-Q1 I2C 位传输图 8-37 I2C 位传输
TPS25763-Q1 I2C 确认图 8-38 I2C 确认