ZHCSCJ3D June   2014  – October  2017 TPS25942A , TPS25942L , TPS25944A , TPS25944L

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Enable and Adjusting Undervoltage Lockout
      2. 9.3.2  Overvoltage Protection (OVP)
      3. 9.3.3  Hot Plug-In and In-Rush Current Control
      4. 9.3.4  Overload and Short Circuit Protection
        1. 9.3.4.1 Overload Protection
        2. 9.3.4.2 Short Circuit Protection
        3. 9.3.4.3 Start-Up With Short on Output
        4. 9.3.4.4 Constant Current Limit Behavior During Overcurrent Faults
      5. 9.3.5  Reverse Current Protection
      6. 9.3.6  FAULT Response
      7. 9.3.7  Current Monitoring
      8. 9.3.8  Power Good Comparator
      9. 9.3.9  IN, OUT and GND Pins
      10. 9.3.10 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Diode Mode
      2. 9.4.2 Shutdown Control
      3. 9.4.3 Operational Differences Between the TPS25942 and TPS25944
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Step by Step Design Procedure
        2. 10.2.2.2 Programming the Current-Limit Threshold: R(ILIM) Selection
        3. 10.2.2.3 Undervoltage Lockout and Overvoltage Set Point
        4. 10.2.2.4 Programming Current Monitoring Resistor—RIMON
        5. 10.2.2.5 Setting Output Voltage Ramp Time (tdVdT)
          1. 10.2.2.5.1 Case1: Start-Up Without Load: Only Output Capacitance C(OUT) Draws Current During Start-Up
          2. 10.2.2.5.2 Case 2: Start-Up With Load: Output Capacitance C(OUT) and Load Draws Current During Start-Up
        6. 10.2.2.6 Programing the Power Good Set Point
        7. 10.2.2.7 Support Component Selections—R6, R7 and CIN
      3. 10.2.3 Application Curves
    3. 10.3 System Examples
      1. 10.3.1 Active ORing (Auto-Power Multiplexer) Operation
        1. 10.3.1.1 N+1 Power Supply Operation
        2. 10.3.1.2 Priority Power MUX Operation
        3. 10.3.1.3 Priority MUXing With Almost Equal Rails (VIN1 ~ VIN2)
        4. 10.3.1.4 Reverse Polarity Protection
  11. 11Power Supply Recommendations
    1. 11.1 Transient Protection
    2. 11.2 Output Short-Circuit Measurements
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 器件支持
    2. 13.2 文档支持
      1. 13.2.1 相关文档
    3. 13.3 相关链接
    4. 13.4 接收文档更新通知
    5. 13.5 社区资源
    6. 13.6 商标
    7. 13.7 静电放电警告
    8. 13.8 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout

Layout Guidelines

  • For all applications, a 0.1-uF or greater ceramic decoupling capacitor is recommended between IN terminal and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be eliminated or minimized.
  • The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the GND terminal of the IC. See Figure 88 for a PCB layout example.
  • High current carrying power path connections must be as short as possible and must be sized to carry at least twice the full-load current.
  • Low current signal ground (SGND), which is the reference ground for the device must be a copper plane or island.
  • Locate all the TPS25942, TPS25944 support components: R(ILIM), CdVdT, R(IMON), and resistors for UVLO and OVP, close to their connection pin. Connect the other end of the component to the SGND with shortest trace length.
  • The trace routing for the RILIM and R(IMON) components to the device must be as short as possible to reduce parasitic effects on the current limit and current monitoring accuracy. These traces must not have any coupling to switching signals on the board.
  • The SGND plane must be connected to high current ground (main power ground) at a single point, that is at the negative terminal of input capacitor.
  • Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the device they are intended to protect, and routed with short traces to reduce inductance. For example, a protection Schottky diode is recommended to address negative transients due to switching of inductive loads, and it must be physically close to the OUT pins.
  • Thermal Considerations: When properly mounted the PowerPAD™ package provides significantly greater cooling ability than an ordinary package. To operate at rated power, the PowerPAD must be soldered directly to the board GND plane directly under the device. The PowerPAD is at GND potential and can be connected using multiple vias to inner layer GND. Other planes, such as the bottom side of the circuit board can be used to increase heat sinking in higher current applications. See the Technical Briefs: PowerPad™ Thermally Enhanced Package ( SLMA002) and PowerPAD™ Made Easy (SLMA004) for more information on using this PowerPAD™ package.
  • The thermal via land pattern specific to the TPS25942, TPS25944 can be downloaded from device webpage.
  • Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been shown to produce good results and is intended as a guideline.

Layout Example

TPS25942A TPS25942L TPS25944A TPS25944L Layout_slvsce9.gif
Optional: Needed only to suppress the transients caused by inductive load switching.
Figure 88. Board Layout