ZHCSL91B October   2020  – March 2022 TPS25947

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
      1.      15
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Reverse Polarity Protection
      2. 8.3.2  Undervoltage Lockout (UVLO and UVP)
      3. 8.3.3  Overvoltage Lockout (OVLO)
      4. 8.3.4  Overvoltage Clamp (OVC)
      5. 8.3.5  Inrush Current, Overcurrent, and Short Circuit Protection
        1. 8.3.5.1 Slew Rate (dVdt) and Inrush Current Control
        2. 8.3.5.2 Circuit-Breaker
        3. 8.3.5.3 Active Current Limiting
        4. 8.3.5.4 Short-Circuit Protection
      6. 8.3.6  Analog Load Current Monitor
      7. 8.3.7  Reverse Current Protection
      8. 8.3.8  Overtemperature Protection (OTP)
      9. 8.3.9  Fault Response and Indication (FLT)
      10. 8.3.10 Auxiliary Channel Control (AUXOFF)
      11. 8.3.11 Power Good Indication (PG)
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Single Device, Self-Controlled
    3. 9.3 Typical Application
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
        1. 9.3.2.1 Device Selection
        2. 9.3.2.2 Setting Undervoltage and Overvoltage Thresholds
        3. 9.3.2.3 Setting Output Voltage Rise Time (tR)
        4. 9.3.2.4 Setting Power Good Assertion Threshold
        5. 9.3.2.5 Setting Overcurrent Threshold (ILIM)
        6. 9.3.2.6 Setting Overcurrent Blanking Interval (tITIMER)
      3. 9.3.3 Application Curves
    4. 9.4 Active ORing
    5. 9.5 Priority Power MUXing
    6. 9.6 USB PD Port Protection
    7. 9.7 Parallel Operation
  10. 10Power Supply Recommendations
    1. 10.1 Transient Protection
    2. 10.2 Output Short-Circuit Measurements
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Active ORing

A typical redundant power supply configuration is shown in Figure 9-7 below. Schottky ORing diodes have been popular for connecting parallel power supplies, such as parallel operation of wall adapter with a battery or a hold-up storage capacitor. The disadvantage of using ORing diodes is high voltage drop and associated power loss. The TPS259470x/4x with integrated, low-ohmic, back-to-back FETs provide a simple and efficient solution. Figure 9-7 below shows the Active ORing implementation using TPS249474x devices.

GUID-20200915-CA0I-9FXP-MGVW-CKJLJ9JPNSGJ-low.gif Figure 9-7 Two Devices, Active ORing Configuration

The linear ORing mechanism in TPS25947xx ensures that there's no reverse current flowing from one power source to the other during fast or slow ramp of either supply.

The following waveform illustrates the active ORing behavior when the supply rails are being ramped up sequentially.

GUID-20210325-CA0I-G4JQ-SGK3-LVLXSMPZ5RBX-low.gif Figure 9-8 Active ORing Response
GUID-20210325-CA0I-XPMC-RGW7-9VQTHXTPH9VH-low.gif Figure 9-9 Active ORing Response

When the bus voltages (IN1 and IN2) are matched, device in each path sees a forward voltage drop and is ON delivering the load current. During this period, current is shared between the rails in the ratio of differential voltage drop across each device.

In addition to supply ORing, the devices protect the system from overvoltage, excessive inrush current, overload and short-circuit faults at all times.

Note:
  1. The TPS259472x (OVC variants) are not recommended for use in ORing applications. While the device is in clamping state, if the output is forced to a higher voltage by the other channel, the device can get damaged.
  2. ORing can be done either between two similar rails or between dissimilar rails. For ORing cases with skewed voltage combinations, care must be taken to design circuit components on PGTH/EN/OVLO pins for the lower voltage channel devices such that the Absolute maximum ratings on those pins are not exceeded when higher voltage is present on the other channel. Also, the dVdt pin capacitor rating must be chosen based on the highest of the 2 supplies. Refer to Recommended Operating Conditions table for more details.