ZHCSOF5A May   2022  – September 2022 TPS25985

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Logic Interface
    7. 7.7 Timing Requirements
    8. 7.8 Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Undervoltage Protection
      2. 8.3.2  Insertion Delay
      3. 8.3.3  Overvoltage Protection
      4. 8.3.4  Inrush Current, Overcurrent, and Short-Circuit Protection
        1. 8.3.4.1 Slew rate (dVdt) and Inrush Current Control
          1. 8.3.4.1.1 Start-Up Time Out
        2. 8.3.4.2 Steady-State Overcurrent Protection (Circuit-Breaker)
        3. 8.3.4.3 Active Current Limiting During Start-Up
        4. 8.3.4.4 Short-Circuit Protection
      5. 8.3.5  Analog Load Current Monitor (IMON)
      6. 8.3.6  Mode Selection (MODE)
      7. 8.3.7  Parallel Device Synchronization (SWEN)
      8. 8.3.8  Stacking Multiple eFuses for Unlimited Scalability
        1. 8.3.8.1 Current Balancing During Start-Up
      9. 8.3.9  Analog Junction Temperature Monitor (TEMP)
      10. 8.3.10 Overtemperature Protection
      11. 8.3.11 Fault Response and Indication (FLT)
      12. 8.3.12 Power Good Indication (PG)
      13. 8.3.13 Output Discharge
      14. 8.3.14 General Purpose Comparator
      15. 8.3.15 FET Health Monitoring
      16. 8.3.16 Single Point Failure Mitigation
        1. 8.3.16.1 IMON Pin Single Point Failure
        2. 8.3.16.2 ILIM Pin Single Point Failure
        3. 8.3.16.3 IREF Pin Single Point Failure
        4. 8.3.16.4 ITIMER Pin Single Point Failure
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Single Device, Standalone Operation
      2. 9.1.2 Multiple Devices, Parallel Connection
    2. 9.2 Typical Application: 12-V, 3.6-kW Power Path Protection in Datacenter Servers
      1. 9.2.1 Application
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
      4. 9.2.4 Application Performance Plots
    3. 9.3 Multiple eFuses, Parallel Connection with PMBus
    4. 9.4 Digital Telemetry Using External Microcontroller
    5. 9.5 What to Do and What Not to Do
  10. 10Power Supply Recommendations
    1. 10.1 Transient Protection
    2. 10.2 Output Short-Circuit Measurements
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Fault Response and Indication (FLT)

Table 8-3 summarizes the device response to various fault conditions.

Table 8-3 Fault Summary

Event or Condition

Device Response

Fault Latched Internally

FLT Pin Status

Delay

Steady-state

None

N/A

H

Inrush

None

N/A

H

Overtemperature

Shutdown

Y

L

Undervoltage (EN/UVLO)

Shutdown

N

H

Undervoltage (VDD UVP)

Shutdown

N

H

Undervoltage (VIN UVP)

Shutdown

N

H

Overvoltage (VIN OVP)

Shutdown

N

H

Transient overcurrent

None

N

H

Persistent overcurrent (steady-state)

Circuit-Breaker

Y

L

tITIMER

Persistent overcurrent (start-up)

Current Limit

N

L

Short-circuit (primary mode)

Fast-trip

Y

L

tFT

Short-circuit (secondary mode)

Fast-trip followed by current limited Start-up

N

H

ILIM pin open (start-up)

Shutdown

Y

L

ILIM pin short (start-up)

Shutdown (if IOUT > IOC_BKP)

Y

L

ILIM pin open (steady-state)

Active current sharing loop always active

N

H

ILIM pin short (steady-state)

Active current sharing loop disabled

N

H

IMON pin open (steady-state)

Shutdown

Y

L

IMON pin short (steady-state)

Shutdown (If IOUT > IOC_BKP)

Y

L

45 μs

IREF pin open (start-up)

Shutdown (If IOUT > IOC_BKP)

Y

L

IREF pin open (steady-state)

Shutdown (if IOUT > IOC_BKP)

Y

L

tITIMER

IREF pin short (steady-state)

Shutdown

Y

L

IREF pin short (start-up)

Shutdown

Y

L

ITIMER pin forced to high voltage

Shutdown (if IOUT > IOCP or IOUT > IOC_BKP)

Y

L

tSPFAIL_TMR

Start-up timeout

Shutdown

Y

L

tSU_TMR

FET health fault (G-S)

Shutdown

Y

L

10 μs

FET health fault (G-D)

Shutdown

Y

L

FET health fault (D-S)

Shutdown

N

L

tSU_TMR

External fault (SWEN pulled low externally while device is not in UV or OV)

Shutdown

Y

L

FLT is an open-drain pin and must be pulled up to an external supply.

The device response after a fault varies based on the mode of operation:

  1. During standalone or primary mode of operation (MODE = OPEN), the device latches a fault and follows the auto-retry or latch-off response as per the device selection. When the device turns on again, it follows the usual DVDT limited start-up sequence.
  2. During the secondary mode of operation (MODE = GND), if the device detects any fault, it pulls the SWEN pin low momentarily to signal the event to the primary device and thereafter relies on the primary to take control of the fault response. However, if the primary device fails to register the fault, there i a failsafe mechanism in the secondary device to turn off the entire chain and enter a latch-off condition. Thereafter, the device can be turned on again only by power cycling VDD below VUVP(F) or by cycling EN/UVLO pin below VSD(F).

For faults that are latched internally, power cycling the part or pulling the EN/UVLO pin voltage below VSD(F) clears the fault and the pin is de-asserted. This action also clears the tRST timer (auto-retry variants only). Pulling the EN/UVLO just below the UVLO threshold has no impact on the device in this condition. This is true for both latch-off and auto-retry variants.