ZHCSIU6F September   2018  – June 2021 TPS2663

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Hot Plug-In and In-Rush Current Control
        1. 9.3.1.1 Thermal Regulation Loop
      2. 9.3.2  PGOOD and PGTH
        1. 9.3.2.1 PGTH as VOUT Sensing Input
      3. 9.3.3  Undervoltage Lockout (UVLO)
      4. 9.3.4  Overvoltage Protection (OVP)
      5. 9.3.5  Input Reverse Polarity Protection (B_GATE, DRV)
      6. 9.3.6  Reverse Current Protection
      7. 9.3.7  Overload and Short Circuit Protection
        1. 9.3.7.1 Overload Protection
          1. 9.3.7.1.1 Active Current Limiting at 1x IOL, (TPS26630 and TPS26632 Only)
          2. 9.3.7.1.2 Active Current Limiting with 2x IOL Pulse Current Support, (TPS26631, TPS26633, TPS26635 and TPS26636 Only)
        2. 9.3.7.2 Short Circuit Protection
          1. 9.3.7.2.1 Start-Up With Short-Circuit On Output
      8. 9.3.8  Output Power Limiting, PLIM (TPS26632, TPS26633, TPS26635 and TPS26636 Only)
      9. 9.3.9  Current Monitoring Output (IMON)
      10. 9.3.10 FAULT Response ( FLT)
      11. 9.3.11 IN_SYS, IN, OUT and GND Pins
      12. 9.3.12 Thermal Shutdown
      13. 9.3.13 Low Current Shutdown Control (SHDN)
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application: Power Path Protection in a PLC System
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Programming the Current-Limit Threshold—R(ILIM) Selection
        2. 10.2.2.2 Undervoltage Lockout and Overvoltage Set Point
        3. 10.2.2.3 Output Buffer Capacitor – COUT
        4. 10.2.2.4 PGTH Set Point
        5. 10.2.2.5 Setting Output Voltage Ramp Time—(tdVdT)
          1. 10.2.2.5.1 Support Component Selections— RPGOOD and C(IN)
        6. 10.2.2.6 Selecting Q1, Q2 and TVS Clamp for Surge Protection
      3. 10.2.3 Application Curves
    3. 10.3 System Examples
      1. 10.3.1 Simple 24-V Power Supply Path Protection
      2. 10.3.2 Priority Power MUX Operation
      3. 10.3.3 Input Protection for a Compact 24-V Auxiliary Power Supply for Servo Drives
    4. 10.4 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Transient Protection
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 术语表
  14. 14Mechanical, Packaging, and Orderable Information

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RGE|24
  • PWP|20
散热焊盘机械数据 (封装 | 引脚)

Undervoltage Lockout and Overvoltage Set Point

The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using an external voltage divider network of R1, R2 and R3 connected between IN_SYS, UVLO, OVP and GND pins of the device. The values required for setting the undervoltage and overvoltage are calculated by solving Equation 9 and Equation 10.

Equation 9. GUID-ED460F70-6F1A-4567-85AB-F438CEBDA41B-low.gif
Equation 10. GUID-CC0335C5-D065-4491-9312-2AE41D5E85C7-low.gif

For minimizing the input current drawn from the power supply {I(R123) = V(IN) / (R1 + R2 + R3)}, it is recommended to use higher value resistance for R1, R2 and R3.

However, the leakage current due to external active components connected at resistor string can add error to these calculations. So, the resistor string current, I(R123) must be chosen to be 20x greater than the leakage current of UVLO and OVP pins.

From the device electrical specifications, V(OVPR) = 1.2 V and V(UVLOR) = 1.2 V. From the design requirements, V(OV) is 33 V and V(UV) is 18 V. To solve the equation, first choose the value of R3 = 34 kΩ and use Equation 9 to solve for (R1 + R2) = 916 kΩ. Use Equation 10 and value of (R1 + R2) to solve for R2 = 29.4 kΩ and finally R1= 887 kΩ.

Choose the closest standard 1% resistor values: R1 = 887 kΩ, R2 = 29.4 kΩ, and R3 = 34 kΩ.

The UVLO and the OVP pins can also be connected to the GND pin to enable the internal default V(OV) = 34.2 V and V(UV) = 15.6 V.