SLVSH67 September   2024 TPS26750

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
      1. 5.1.1 TPS26750 - Absolute Maximum Ratings
      2. 5.1.2 TPS26750 - Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
      1. 5.3.1 TPS26750 - Recommended Operating Conditions
    4. 5.4  Recommended Capacitance
    5. 5.5  Thermal Information
      1. 5.5.1 TPS26750 - Thermal Information
    6. 5.6  Power Supply Characteristics
    7. 5.7  Power Consumption
    8. 5.8  PP_5V Power Switch Characteristics
    9. 5.9  POWER_PATH_EN Characteristics - TPS26750
    10. 5.10 Power Path Supervisory
    11. 5.11 CC Cable Detection Parameters
    12. 5.12 CC VCONN Parameters
    13. 5.13 CC PHY Parameters
    14. 5.14 Thermal Shutdown Characteristics
    15. 5.15 ADC Characteristics
    16. 5.16 Input/Output (I/O) Characteristics
    17. 5.17 BC1.2 Characteristics
    18. 5.18 I2C Requirements and Characteristics
    19. 5.19 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  USB-PD Physical Layer
        1. 7.3.1.1 USB-PD Encoding and Signaling
        2. 7.3.1.2 USB-PD Bi-Phase Marked Coding
        3. 7.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks
        4. 7.3.1.4 USB-PD BMC Transmitter
        5. 7.3.1.5 USB-PD BMC Receiver
        6. 7.3.1.6 Squelch Receiver
      2. 7.3.2  Power Management
        1. 7.3.2.1 Power-On And Supervisory Functions
        2. 7.3.2.2 VBUS LDO
      3. 7.3.3  Power Paths
        1. 7.3.3.1 Internal Sourcing Power Paths
          1. 7.3.3.1.1 PP_5V Current Clamping
          2. 7.3.3.1.2 PP_5V Local Overtemperature Shut Down (OTSD)
          3. 7.3.3.1.3 PP_5V OVP
          4. 7.3.3.1.4 PP_5V UVLO
          5. 7.3.3.1.5 PP_5Vx Reverse Current Protection
          6. 7.3.3.1.6 PP_CABLE Current Clamp
          7. 7.3.3.1.7 PP_CABLE Local Overtemperature Shut Down (OTSD)
          8. 7.3.3.1.8 PP_CABLE UVLO
      4. 7.3.4  Cable Plug and Orientation Detection
        1. 7.3.4.1 Configured as a Source
        2. 7.3.4.2 Configured as a Sink
        3. 7.3.4.3 Configured as a DRP
        4. 7.3.4.4 Dead Battery Advertisement
      5. 7.3.5  Overvoltage Protection (CC1, CC2)
      6. 7.3.6  Default Behavior Configuration (ADCIN1, ADCIN2)
      7. 7.3.7  ADC
      8. 7.3.8  BC 1.2 (USB_P, USB_N)
      9. 7.3.9  Digital Interfaces
        1. 7.3.9.1 General GPIO
        2. 7.3.9.2 I2C Interface
      10. 7.3.10 Digital Core
      11. 7.3.11 I2C Interface
        1. 7.3.11.1 I2C Interface Description
          1. 7.3.11.1.1 I2C Clock Stretching
          2. 7.3.11.1.2 I2C Address Setting
          3. 7.3.11.1.3 Unique Address Interface
    4. 7.4 Device Functional Modes
      1. 7.4.1 Pin Strapping to Configure Default Behavior
      2. 7.4.2 Power States
    5. 7.5 Thermal Shutdown
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Programmable Power Supply (PPS) - Design Requirements
        2. 8.2.1.2 Liquid Detection Design Requirements
        3. 8.2.1.3 BC1.2 Application Design Requirements
        4. 8.2.1.4 USB Data Support Design Requirements
        5. 8.2.1.5 EPR Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Programmable Power Supply (PPS)
        2. 8.2.2.2 Liquid Detection
        3. 8.2.2.3 BC1.2 Application
        4. 8.2.2.4 USB Data Support
        5. 8.2.2.5 Power Delivery EPR Support
      3. 8.2.3 Application Curves
        1. 8.2.3.1 Programmable Power Supply (PPS) Application Curves
        2. 8.2.3.2 Liquid Detection Application Curves
        3. 8.2.3.3 BC1.2 Application Curves
        4. 8.2.3.4 USB Data Support Application Curves
        5. 8.2.3.5 EPR Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 3.3V Power
        1. 8.3.1.1 VIN_3V3 Input Switch
      2. 8.3.2 1.5V Power
      3. 8.3.3 Recommended Supply Load Capacitance
    4. 8.4 Layout
      1. 8.4.1 TPS26750 - Layout
        1. 8.4.1.1 Layout Guidelines
          1. 8.4.1.1.1 Recommended Via Size
          2. 8.4.1.1.2 Minimum Trace Widths
        2. 8.4.1.2 Layout Example
          1. 8.4.1.2.1 TPS26750 Schematic Layout Example
          2. 8.4.1.2.2 TPS26750 Layout Example - PCB Plots
            1. 8.4.1.2.2.1 TPS26750 Component Placement
            2. 8.4.1.2.2.2 TPS26750 PP5V
            3. 8.4.1.2.2.3 TPS26750 PP_EXT
            4. 8.4.1.2.2.4 TPS26750 VBUS
            5. 8.4.1.2.2.5 TPS26750 I/O
            6. 8.4.1.2.2.6 TPS26750 PPEXT Gate Driver
            7. 8.4.1.2.2.7 TPS26750 GND
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RSM|32
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Management

The TPS26750 power management block receives power and generates voltages to provide power to the TPS26750 internal circuitry. These generated power rails are LDO_3V3 and LDO_1V5. LDO_3V3 can also be used as a low power output for external EEPROM memory. The power supply path is shown in Figure 7-9.

TPS26750 Power
          SuppliesFigure 7-9 Power Supplies

The TPS26750 is powered from either VIN_3V3 or VBUS. The normal power supply input is VIN_3V3. When powering from VIN_3V3, current flows from VIN_3V3 to LDO_3V3 to power the core 3.3-V circuitry and I/Os. A second LDO steps the voltage down from LDO_3V3 to LDO_1V5 to power the 1.5-V core digital circuitry. When VIN_3V3 power is unavailable and power is available on VBUS, it is referred to as the dead-battery start-up condition. In a dead-battery start-up condition, the TPS26750 opens the VIN_3V3 switch until the host clears the dead-battery flag through I2C. Therefore, the TPS26750 is powered from the VBUS input with the higher voltage during the dead-battery start-up condition and until the dead-battery flag is cleared. When powering from a VBUS input, the voltage on VBUS is stepped down through an LDO to LDO_3V3.