ZHCSOP8A March   2022  – September 2023 TPS3760

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Timing Diagrams
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Voltage (VDD)
        1. 8.3.1.1 Undervoltage Lockout (VPOR < VDD < UVLO)
        2. 8.3.1.2 Power-On Reset (VDD < VPOR )
      2. 8.3.2 SENSE
        1. 8.3.2.1 SENSE Hysteresis
      3. 8.3.3 Output Logic Configurations
        1. 8.3.3.1 Open-Drain
        2. 8.3.3.2 Push-Pull
        3. 8.3.3.3 Active-High (RESET)
        4. 8.3.3.4 Active-Low (RESET)
      4. 8.3.4 User-Programmable Reset Time Delay
        1. 8.3.4.1 Reset Time Delay Configuration
      5. 8.3.5 User-Programmable Sense Delay
        1. 8.3.5.1 Sense Time Delay Configuration
      6. 8.3.6 Manual RESET (CTR / MR) Input
      7. 8.3.7 RESET Latch Mode
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Adjustable Voltage Thresholds
    3. 9.3 Typical Application
      1. 9.3.1 Design 1: Off-Battery Monitoring
        1. 9.3.1.1 Design Requirements
        2. 9.3.1.2 Detailed Design Procedure
        3. 9.3.1.3 Application Curves
  11. 10Power Supply Recommendations
    1. 10.1 Power Dissipation and Device Operation
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Creepage Distance
  13. 12Device and Documentation Support
    1. 12.1 Device Nomenclature
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 静电放电警告
    6. 12.6 术语表
  14. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Detailed Design Procedure

The primary advantage of this application is being able to directly monitor a voltage on an automotive battery without needing external an resistor dividers on the SENSE input. This keeps the overall IQ of the design low while still achieving the desired rail monitoring.

Voltage rail monitoring is done by connecting the SENSE input directly to the battery rail after the TVS protection diodes. The TPS3760 that is being used in this example is a fixed voltage variant where theSENSE threshold voltage has been set internally. Word of caution, the TVS protection diodes must be chosen such that the transient voltages on the monitored rails do not exceed the absolute max limit listed in Section 7.1.

To use this configuration, the specific voltage threshold variation of the device must be chosen according to the application. In this configuration, the '77' variation must be chosen for 7.7 V as shown in Section 5.

The device being able to handle 65 V on VDD means the monitored voltage rail can go as high as 42 V for the application transients and not violate the recommended maximum for the supervisor as it usually would. This is useful when monitoring a voltage rail that has a wide range that may go much higher than the nominal rail voltage such as in this case. Good design practice recommends using a 0.1 µF capacitor on the VDD pin and this capacitance may need to increase if using an adjustable version with a resistor divider.