SLVSA82F March   2011  – December 2014 TPS43330-Q1 , TPS43332-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Buck Controllers: Normal Mode PWM Operation
        1. 8.3.1.1 Frequency Selection and External Synchronization
        2. 8.3.1.2 Enable Inputs
        3. 8.3.1.3 Feedback Inputs
        4. 8.3.1.4 Soft-Start Inputs
        5. 8.3.1.5 Current Sensing and Current Limit With Foldback
        6. 8.3.1.6 Slope Compensation
        7. 8.3.1.7 Power-Good Outputs and Filter Delays
      2. 8.3.2 Boost Controller
      3. 8.3.3 Frequency-Hopping Spread Spectrum
      4. 8.3.4 Gate-Driver Supply (VREG, EXTSUP)
      5. 8.3.5 External P-Channel Drive (GC2) and Reverse-Battery Protection
      6. 8.3.6 Undervoltage Lockout and Overvoltage Protection
      7. 8.3.7 Thermal Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Buck Controllers: Current-Mode Operation
      2. 8.4.2 Buck Controllers: Light-Load PFM Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Boost Component Selection
        2. 9.2.2.2  Boost Maximum Input Current IIN_MAX
        3. 9.2.2.3  Boost Inductor Selection, L
        4. 9.2.2.4  Inductor Ripple Current, IRIPPLE
        5. 9.2.2.5  Peak Current in Low-Side FET, IPEAK
        6. 9.2.2.6  Right Half-Plane Zero RHP Frequency, fRHP
        7. 9.2.2.7  Output Capacitor, COUTx
        8. 9.2.2.8  Bandwidth of Boost Converter, fC
        9. 9.2.2.9  Output Ripple Voltage Due to Load Transients, ∆VOUTx
        10. 9.2.2.10 Selection of Components for Type II Compensation
        11. 9.2.2.11 Input Capacitor, CIN
        12. 9.2.2.12 Output Schottky Diode D1 Selection
        13. 9.2.2.13 Low-Side MOSFET (BOT_SW3)
        14. 9.2.2.14 BuckA Component Selection
          1. 9.2.2.14.1 BuckA Component Selection
          2. 9.2.2.14.2 Current-Sense Resistor RSENSE
        15. 9.2.2.15 Inductor Selection L
        16. 9.2.2.16 Inductor Ripple Current IRIPPLE
        17. 9.2.2.17 Output Capacitor COUTA
        18. 9.2.2.18 Bandwidth of Buck Converter fC
        19. 9.2.2.19 Selection of Components for Type II Compensation
        20. 9.2.2.20 Resistor Divider Selection for Setting VOUTA Voltage
        21. 9.2.2.21 BuckB Component Selection
        22. 9.2.2.22 Resistor Divider Selection for Setting VOUT Voltage
        23. 9.2.2.23 BuckX High-Side and Low-Side N-Channel MOSFETs
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Boost Converter
      2. 11.1.2 Buck Converter
      3. 11.1.3 Other Considerations
    2. 11.2 Layout Example
    3. 11.3 Power Dissipation Derating Profile, 38-Pin HTTSOP PowerPAD™ Package
  12. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Voltage Input voltage: VIN, VBAT –0.3 60 V
Voltage
(buck function:
BuckA and BuckB)
Ground: PGNDA–AGND, PGNDB–AGND –0.3 0.3 V
Enable inputs: ENA, ENB –0.3 60 V
Bootstrap inputs: CBA, CBB –0.3 68 V
Bootstrap inputs: CBA–PHA, CBB–PHB –0.3 8.8 V
Phase inputs: PHA, PHB –0.7 60 V
Phase inputs: PHA, PHB (for 150 ns) –1 60 V
Feedback inputs: FBA, FBB –0.3 13 V
Error amplifier outputs: COMPA, COMPB –0.3 13 V
High-side MOSFET drivers: GA1-PHA, GB1-PHB –0.3 8.8 V
Low-side MOSFET drivers: GA2–PGNDA, GB2–PGNDB –0.3 8.8 V
Current-sense voltage: SA1, SA2, SB1, SB2 –0.3 13 V
Soft start: SSA, SSB –0.3 13 V
Power-good outputs: PGA, PGB –0.3 13 V
Power-good delay: DLYAB –0.3 13 V
Switching-frequency timing resistor: RT –0.3 13 V
SYNC, EXTSUP –0.3 13 V
Voltage
(boost function)
Low-side MOSFET driver: GC1–PGNDA –0.3 8.8 V
Error-amplifier output: COMPC –0.3 13 V
Enable input: ENC –0.3 13 V
Current-limit sense: DS –0.3 60 V
Output-voltage select: DIV –0.3 8.8 V
Voltage
(PMOS driver)
P-channel MOSFET driver: GC2 –0.3 60 V
P-channel MOSFET driver: VIN-GC2 –0.3 8.8 V
Gate-driver supply, VREG –0.3 8.8 V
Junction temperature, TJ –40 150 °C
Operating temperature, TA –40 125 °C
Storage temperature, Tstg –55 165 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to AGND, unless otherwise specified.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) ±2000 V
Charged device model (CDM), per AEC Q100-011 Corner pins: VBAT (1), ENC (19), SYNC (20), VIN (38) ±750
Other pins ±500
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Buck function:
BuckA and BuckB voltage
Input voltage: VIN, VBAT 4 40 V
Enable inputs: ENA, ENB 0 40
Boot inputs: CBA, CBB 4 48
Phase inputs: PHA, PHB –0.6 40
Current-sense voltage: SA1, SA2, SB1, SB2 0 11
Power-good output: PGA, PGB 0 11
SYNC, EXTSUP 0 9
Boost function Enable input: ENC 0 9 V
Voltage sense: DS 40
DIV 0 VREG
Operating temperature: TA –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS4333x-Q1 UNIT
DAP
38 PINS
RθJA Junction-to-ambient thermal resistance(2) 27.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 19.6
RθJB Junction-to-board thermal resistance(4) 15.9
ψJT Junction-to-top characterization parameter(5) 0.24
ψJB Junction-to-board characterization parameter(6) 6.6
RθJC(bot) Junction-to-case (bottom) thermal resistance(7) 1.2
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

7.5 Electrical Characteristics

VIN = 8 V to 18 V, TJ = –40°C to 150°C (unless otherwise noted)
NO. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
1.0 INPUT SUPPLY
1.1 VBAT Supply voltage Boost controller enabled, after satisfying initial start-up condition 2 40 V
1.2 VIN Input voltage required for device on initial start-up 6.5 40 V
Buck regulator operating range after initial start-up 4 40
1.3 VIN(UV) Buck undervoltage lockout VIN falling. After a reset, initial start-up conditions may apply.(3) 3.5 3.6 3.8 V
VIN rising. After a reset, initial start-up conditions may apply.(3) 3.8 4 V
1.4 VBOOST_UNLOCK Boost unlock threshold VBAT rising 8.2 8.5 8.8 V
1.5 Iq_LPM_ LPM quiescent current:
(1)
VIN = 13 V, BuckA: LPM, BuckB: off, TA = 25°C 30 40 µA
VIN = 13 V, BuckB: LPM, BuckA: off, TA = 25°C
VIN = 13 V, BuckA, B: LPM, TA = 25°C 35 45 µA
1.6 Iq_LPM LPM quiescent current:
(1)
VIN = 13 V, BuckA: LPM, BuckB: off, TA = 125°C 40 50 µA
VIN = 13 V, BuckB: LPM, BuckA: off, TA = 125°C
VIN = 13 V, BuckA, B: LPM, TA = 125°C 45 55 µA
1.7 Iq_NRM Quiescent current:
normal (PWM) mode(1)
SYNC = HIGH, TA = 25°C 4.85 5.3 mA
VIN = 13 V, BuckA: CCM, BuckB: off, TA = 25°C
VIN = 13 V, BuckB: CCM, BuckA: off, TA = 25°C
VIN = 13 V, BuckA, B: CCM, TA = 25°C 7 7.6
1.8 Iq_NRM Quiescent current:
normal (PWM) mode(1)
SYNC = HIGH, TA = 125°C 5 5.5 mA
VIN = 13 V, BuckA: CCM, BuckB: off, TA = 125°C
VIN = 13 V, BuckB: CCM, BuckA: off, TA = 125°C
VIN = 13 V, BuckA, B: CCM, TA = 125°C 7.5 8
1.9 Ibat_sh Shutdown current BuckA, B: off, VBAT = 13 V , TA = 25°C 2.5 4 µA
1.10 Ibat_sh Shutdown current BuckA, B: off, VBAT = 13 V, TA = 125°C 3 5 µA
2.0 INPUT VOLTAGE VBAT — UNDERVOLTAGE LOCKOUT
2.1 VBAT(UV) Boost-input undervoltage VBAT falling. After a reset, initial start-up conditions may apply.(3) 1.8 1.9 2 V
VBAT rising. After a reset, initial start-up conditions may apply.(3) 2.4 2.5 2.6 V
2.2 UVLOHys Hysteresis 500 600 700 mV
2.3 UVLOfilter Filter time 5 µs
3.0 INPUT VOLTAGE VIN — OVERVOLTAGE LOCKOUT
3.1 VOVLO Overvoltage shutdown VIN rising 45 46 47 V
VIN falling 43 44 45
3.2 OVLOHys Hysteresis 1 2 3 V
3.3 OVLOfilter Filter time 5 µs
4.0 BOOST CONTROLLER
4.1 Vboost7V Boost VOUT = 7 V DIV = low, VBAT = 2 V to 7 V 6.8 7 7.3 V
4.2 Vboost7V-th Boost-enable threshold Boost VOUT = 7 V, VBAT falling 7.5 8 8.5 V
Boost-disable threshold Boost VOUT = 7 V, VBAT rising 8 8.5 9
Boost hysteresis Boost VOUT = 7 V, VBAT rising or falling 0.4 0.5 0.6
4.3 Vboost10V Boost VOUT = 10 V DIV = open, VBAT = 2 V to 10 V 9.7 10 10.4 V
4.4  Vboost10V-th Boost-enable threshold Boost VOUT = 10 V, VBAT falling 10.5 11 11.5 V
Boost-disable threshold Boost VOUT = 10 V, VBAT rising 11 11.5 12
Boost hysteresis Boost VOUT = 10 V, VBAT rising or falling 0.4 0.5 0.6
4.5 Vboost11V Boost VOUT = 11 V DIV = VREG, VBAT = 2 V to 11 V 10.7 11 11.4 V
4.6  Vboost11V-th Boost-enable threshold Boost VOUT = 11 V, VBAT falling 11.5 12 12.5 V
Boost-disable threshold Boost VOUT = 11 V, VBAT rising 12 12.5 13
Boost hysteresis Boost VOUT = 11 V, VBAT rising or falling 0.4 0.5 0.6
BOOST-SWITCH CURRENT LIMIT
4.7 VDS Current-limit sensing DS input with respect to PGNDA 0.175 0.2 0.225 V
4.8 tDS Leading-edge blanking 200 ns
GATE DRIVER FOR BOOST CONTROLLER
4.9 IGC1 Peak Gate-driver peak current 1.5 A
4.10 rDS(on) Source and sink driver VREG = 5.8 V, IGC1 current = 200 mA 2 Ω
GATE DRIVER FOR PMOS
4.11 rDS(on) PMOS OFF 10 20 Ω
4.12 IPMOS_ON Gate current VIN = 13.5 V, VGS = –5 V 10 mA
4.13 tdelay_ON Turnon delay C = 10 nF 5 10 µs
BOOST-CONTROLLER SWITCHING FREQUENCY
4.14 fsw-Boost Boost switching frequency fSW_Buck / 2 kHz
4.15 DBoost Boost duty cycle 90%
ERROR AMPLIFIER (OTA) FOR BOOST CONVERTERS
4.16 GmBOOST Forward transconductance VBAT = 12 V 0.8 1.35 mS
VBAT = 5 V 0.35 0.65
5.0 BUCK CONTROLLERS
5.1 VBuckA or VBuckB Adjustable output-voltage range 0.9 11 V
5.2 Vref, NRM Internal reference and tolerance voltage in normal mode Measure FBX pin 0.792 0.8 0.808 V
–1% 1%
5.3 Vref, LPM Internal reference and tolerance voltage in low-power mode Measure FBX pin 0.784 0.8 0.816 V
–2% 2%
5.4 Vsense V sense for forward-current limit in CCM FBx = 0.75 V (low duty cycle) 60 75 90 mV
5.5 V sense for reverse-current limit in CCM FBx = 1 V –65 –37.5 –23 mV
5.6 VI-Foldback V sense for output short FBx = 0 V 17 32.5 48 mV
5.7 tdead Shoot-through delay, blanking time 20 ns
5.8 DCNRM High-side minimum on-time 100 ns
Maximum duty cycle (digitally controlled) 98.75%
5.9  DCLPM Duty cycle, LPM 80%
5.10 ILPM_Entry LPM entry-threshold load current as fraction of maximum set load current 1% See (2)
ILPM_Exit LPM exit-threshold load current as fraction of maximum set load current See (2) 10%
HIGH-SIDE EXTERNAL NMOS GATE DRIVERS FOR BUCK CONTROLLER
5.11 IGX1_peak Gate-driver peak current 1.5 A
5.12 rDS(on) Source and sink driver VREG = 5.8 V, IGX1 current = 200 mA 2 Ω
LOW-SIDE NMOS GATE DRIVERS FOR BUCK CONTROLLER
5.13 IGX2_peak Gate-driver peak current 1.5 A
5.14 RDS ON Source and sink driver VREG = 5.8 V, IGX2 current = 200 mA 2 Ω
ERROR AMPLIFIER (OTA) FOR BUCK CONVERTERS
5.15 GmBUCK Transconductance COMPA, COMPB = 0.8 V,
source/sink = 5 µA, test in feedback loop
0.72 1 1.35 mS
5.16 IPULLUP_FBx Pullup current at FBx pins FBx = 0 V 50 100 200 nA
6.0 DIGITAL INPUTS: ENA, ENB, ENC, SYNC
6.1 VIH Higher threshold VIN = 13 V 1.7 V
6.2 VIL Lower threshold VIN = 13 V 0.7 V
6.3 RIH_SYNC Pulldown resistance on SYNC VSYNC = 5 V 500
6.4 RIL_ENC Pulldown resistance on ENC VENC = 5 V 500
6.5 IIL_ENx Pullup current source on ENA, ENB VENx = 0 V 0.5 2 µA
7.0 BOOST OUTPUT VOLTAGE: DIV
7.1 VIH_DIV Higher threshold VREG = 5.8 V VREG – 0.2 V
7.2 VIL_DIV Lower threshold 0.2 V
7.3 Voz_DIV Voltage on DIV if unconnected Voltage on DIV if unconnected VREG / 2 V
8.0 SWITCHING PARAMETER – BUCK DC-DC CONTROLLERS
8.1 fSW_Buck Buck switching frequency RT pin: GND 360 400 440 kHz
8.2 fSW_Buck Buck switching frequency RT pin: 60-kΩ external resistor 360 400 440 kHz
8.3 fSW_adj Buck adjustable range with external resistor RT pin: external resistor 150 600 kHz
8.4 fSYNC Buck synchronization range External clock input 150 600 kHz
8.5 fSS Spread-spectrum spreading TPS43332-Q1 only 5%
9.0 INTERNAL GATE-DRIVER SUPPLY
9.1 VREG Internal regulated supply VIN = 8 V to 18 V, VEXTSUP = 0 V, SYNC = high 5.5 5.8 6.1 V
Load regulation IVREG = 0 mA to 100 mA, VEXTSUP = 0 V,
SYNC = high
0.2% 1%
9.2 VREG(EXTSUP) Internal regulated supply VEXTSUP = 8.5 V 7.2 7.5 7.8 V
Load regulation IEXTSUP = 0 mA to 125 mA, SYNC = High
VEXTSUP = 8.5 V to 13 V
0.2% 1%
9.3 VEXTSUP-th EXTSUP switch-over voltage threshold IVREG = 0 mA to 100 mA,
VEXTSUP ramping positive
4.4 4.6 4.8 V
9.4 VEXTSUP-Hys EXTSUP switch-over hysteresis 150 250 mV
9.5 IVREG-Limit Current limit on VREG VEXTSUP = 0 V, normal mode as well as LPM 100 400 mA
9.6 IVREG_EXTSUP-Limit Current limit on VREG when using EXTSUP IVREG = 0 mA to 100 mA,
VEXTSUP = 8.5 V, SYNC = High
125 400 mA
10.0 SOFT START
10.1 ISSx Soft-start source current VSSA and VSSB = 0 V 0.75 1 1.25 µA
11.0 OSCILLATOR (RT)
11.1 VRT Oscillator reference voltage 1.2 V
12.0 POWER GOOD / DELAY
12.1 PGpullup Pullup for A and B to Sx2 50
12.2 PGth1 Power-good threshold FBx falling –5% –7% –9%
12.3 PGhys Hysteresis 2%
12.4 PGdrop Voltage drop IPGA = 5 mA 450 mV
12.5 IPGA = 1 mA 100 mV
12.6 PGleak Power-good leakage VSx2 = VPGx = 13 V 1 µA
12.7 tdeglitch Power-good deglitch time 2 16 µs
12.8 tdelay Reset delay External capacitor = 1 nF
VBuckX < PGth1
1 ms
12.9 tdelay_fix Fixed reset delay No external capacitor, pin open 20 50 µs
12.10 IOH Activate current source (current to charge external capacitor) 30 40 50 µA
12.11 IIL Activate current sink (current to discharge external capacitor) 30 40 50 µA
13.0 OVERTEMPERATURE PROTECTION
13.1 Tshutdown Junction-temperature shutdown threshold 150 165 °C
13.2 Thys Junction-temperature hysteresis 15 °C
(1) Quiescent current specification is non-switching current consumption without including the current in the external-feedback resistor divider.
(2) The exit threshold specification is to be always higher than the entry threshold.
(3) If VBAT and VREG remain adequate, the buck can continue to operate if VIN is > 3.8 V.

7.6 Typical Characteristics

g_inductor_current_buck_lvsa82.gif
Figure 1. Inductor Currents (Buck)
g_soft_start_outputs_buck_lvsa82.gif
Figure 3. Soft-Start Outputs (Buck)
g_buck_load_step_low_power_exit_lvsa82.gif
Figure 5. Buck Load Step: Low-Power-Mode Exit (90 mA to 4 A at 2.5 A/µs)
g_cranking_pulse_boost_response_12v_3v_lvsa82.gif
Figure 7. Cranking-Pulse Boost Response (12 V to 3 V in 1 ms at Buck Outputs 7.5 and 11.5 W)
g_inductor_currents_boost_lvsa82.gif
Figure 9. Inductor Currents (Boost)
g_current_limit_vs_compx_voltage_buck_lvsa82.gif
Figure 11. BUCKx Peak Current Limit vs COMPx Voltage
g_foldback_current_limit_buck_lvsa82.gif
Figure 13. Foldback Current Limit (Buck)
g_current_limit_duty_cycle_buck_lvsa82.gif
Figure 15. Current Limit vs Duty cycle (Buck)
g_buck_load_step_forced_cont_lvsa82.gif
Figure 2. Buck Load Step: Forced Continuous Mode (0 to 4 A at 2.5 A/µs)
g_buck_load_step_low_power_entry_lvsa82.gif
Figure 4. Buck Load Step: Low-Power-Mode Entry (4 A to 90 mA at 2.5 A/µs)
C001_SLVSA82.gif
Figure 6. Load Step Response (Boost) (0 to 5 A at 10 A/µs)
g_cranking_pulse_boost_response_12v_4v_lvsa82.gif
Figure 8. Cranking-Pulse Boost Response (12 V to 4 V in 1 ms at Boost Direct Output 25 W)
g_no_load_iq_over_temp_misc_lvsa82.gif
Figure 10. No-Load Quiescent Current vs Temperature
g_current_sense_pins_input_current_buck_lvsa82.gif
Figure 12. Current-Sense Pins Input current (Buck)
g_regulated_fbx_voltage_temp_buck_lvsa82.gif
Figure 14. Regulated FBx Voltage vs Temperature (Buck)