ZHCSMA7D January   2022  – April 2024 TPS4811-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Charge Pump and Gate Driver output (VS, PU, PD, BST, SRC)
      2. 8.3.2  Capacitive Load Driving
        1. 8.3.2.1 FET Gate Slew Rate Control
        2. 8.3.2.2 Using Precharge FET - (with TPS48111-Q1 Only)
      3. 8.3.3  Short-Circuit Protection
        1. 8.3.3.1 Overcurrent Protection With Auto-Retry
        2. 8.3.3.2 Overcurrent Protection With Latch-Off
      4. 8.3.4  Short-Circuit Protection
      5. 8.3.5  Analog Current Monitor Output (IMON)
      6. 8.3.6  Overvoltage (OV) and Undervoltage Protection (UVLO)
      7. 8.3.7  Device Functional Mode (Shutdown Mode)
      8. 8.3.8  Remote Temperature sensing and Protection (DIODE)
      9. 8.3.9  Output Reverse Polarity Protection
      10. 8.3.10 TPS4811x-Q1 as a Simple Gate Driver
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Driving HVAC PTC Heater Load on KL40 Line in Power Distribution Unit
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application: Driving B2B FETs With Pre-charging the Output Capacitance
      1. 9.3.1 Design Requirements
      2. 9.3.2 External Component Selection
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 接收文档更新通知
    2. 10.2 支持资源
    3. 10.3 Trademarks
    4. 10.4 静电放电警告
    5. 10.5 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Charge Pump and Gate Driver output (VS, PU, PD, BST, SRC)

Figure 8-3 shows simplified diagram of the charge pump and gate driver circuit implementation. The device houses a strong 3.7-A peak source and 4-A peak sink gate drivers. The strong gate drivers enable paralleling of FETs in high power system designs ensuring minimum transition time in saturation region. A 12-V, 100-µA charge pump is derived from VS terminal and charges the external boot-strap capacitor, CBST that is placed across the GATE driver (BST and SRC).

In switching applications, if the charge pump supply demand is higher than 100 µA, then supply BST externally using a low leakage diode and VAUX supply as shown in the Figure 8-3.

VS is the supply pin to the controller. With VS applied and EN/UVLO pulled high, the charge pump turns ON and charges the CBST capacitor. After the voltage across CBST crosses V(BST_UVLOR), the GATE driver section gets activated. The device has a 1-V (typical) UVLO hysteresis to ensure chattering less performance during initial GATE turn ON. Choose CBST based on the external FET’s QG and allowed dip during FET turn ON. The charge pump remains enabled until the BST to SRC voltage reaches 12.3 V, typically, at which point the charge pump is disabled decreasing the current draw on the VS pin. The charge pump remains disabled until the BST to SRC voltage discharges to 11.7 V typically at which point the charge pump is enabled. The voltage between BST and SRC continue to charge and discharge between 12.3 V and 11.7 V as shown in the Figure 8-3.

TPS4811-Q1 Gate
                        Driver Figure 8-3 Gate Driver

TPS4811-Q1 Charge Pump
                        Operation Figure 8-4 Charge Pump Operation

Use the following equation to calculate the initial gate driver enable delay.

Equation 1. TPS4811-Q1
Where,

CBST is the charge pump capacitance connected across BST and SRC pins,

V(BST_UVLOR) = 7.6 V (typical).

If TDRV_EN needs to be reduced then pre-bias BST terminal externally using an external VAUX supply through a low leakage diode D1 as shown in Figure 8-3. With this connection, TDRV_EN reduces to 350 µs. TPS4811x-Q1 application circuit with external sypply to BST is shown in Figure 8-5.

TPS4811-Q1 TPS48111-Q1 Application
                        Circuit with external supply to BST Figure 8-5 TPS48111-Q1 Application Circuit with external supply to BST

Note: VAUX can be supplied by external supply ranging between 8.1 V and 15 V.