ZHCS936A May   2012  – February 2019 TPS53014

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      典型应用
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Conditions
    3. 6.3 Thermal Information
    4. 6.4 Electrical Characteristics
    5. 6.5 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Operation
      2. 7.3.2 Auto-Skip Eco-Mode Control
      3. 7.3.3 Drivers
      4. 7.3.4 5-Volt Regulator
      5. 7.3.5 Soft Start and Pre-Biased Soft Start
      6. 7.3.6 Overcurrent Protection
      7. 7.3.7 Over/Undervoltage Protection
      8. 7.3.8 UVLO Protection
      9. 7.3.9 Thermal Shutdown
  8. Application and Implementation
    1. 8.1 Typical Application
      1. 8.1.1 Detailed Design Procedure
        1. 8.1.1.1 Component Selection
          1. 8.1.1.1.1 Inductor
          2. 8.1.1.1.2 Output Capacitor
          3. 8.1.1.1.3 Input Capacitor
          4. 8.1.1.1.4 Bootstrap Capacitor
          5. 8.1.1.1.5 VREG5 Capacitor
          6. 8.1.1.1.6 Choose Output Voltage Resistors
  9. Layout
    1. 9.1 Layout Guidelines
  10. 10器件和文档支持
    1. 10.1 接收文档更新通知
    2. 10.2 社区资源
    3. 10.3 商标
    4. 10.4 静电放电警告
    5. 10.5 术语表

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Auto-Skip Eco-Mode™ Control

The TPS53014 is designed with Auto-Skip Eco-mode™ to increase light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point where its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load current further decreases the converter run into discontinuous conduction mode. The on-time is kept almost half as is was in the continuous conduction mode because it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. The transition point to the light load operation IOX(LL) current can be calculated in Equation 1 with 500kHz used as fsw.

Equation 1. TPS53014 eq1_slvsbf1.gif