ZHCSBE2A August   2013  – October 2022 TPS54625

PRODUCTION DATA  

  1. 特性
  2. 应用范围
  3. 说明
  4. ORDERING INFORMATION (1)
  5. 最大绝对额定值
  6. THERMAL INFORMATION
  7. RECOMMENDED OPERATING CONDITIONS
  8. ELECTRICAL CHARACTERISTICS
  9. DEVICE INFORMATION
  10. 10OVERVIEW
  11. 11DETAILED DESCRIPTION
    1. 11.1 PWM Operation
    2. 11.2 PWM Frequency and Adaptive On-Time Control
    3. 11.3 Soft Start and Pre-Biased Soft Start
    4. 11.4 Power Good
    5. 11.5 Output Discharge Control
    6. 11.6 Current Protection
    7. 11.7 Over/Under Voltage Protection
    8. 11.8 UVLO Protection
    9. 11.9 Thermal Shutdown
  12. 12TYPICAL CHARACTERISTICS
  13. 13DESIGN GUIDE
    1. 13.1 Step By Step Design Procedure
    2. 13.2 Output Voltage Resistors Selection
    3. 13.3 Output Filter Selection
    4. 13.4 Input Capacitor Selection
    5. 13.5 Bootstrap Capacitor Selection
    6. 13.6 VREG5 Capacitor Selection
  14. 14THERMAL INFORMATION
  15. 15LAYOUT CONSIDERATIONS
  16. 16Revision History

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Current Protection

The output over-current protection(OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the on time of the high-side FET switch, the switch current increases at a linear rate determined by Vin, Vout, the on-time and the output inductor value. During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current Iout. The TPS54625 constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time. If the measured voltage is above the voltage proportional to the current limit, an internal counter is incremented per each SW cycle and the converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.

There are some important considerations for this type of over-current protection. The load current one half of the peak-to-peak inductor current is higher than the over-current threshold. Also, when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output voltage to fall.