SLVSH95 July   2024 TPS546C25

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  D-CAP4 Control
        1. 6.3.1.1 Loop Compensation
      2. 6.3.2  Internal VCC LDO and Using an External Bias on VCC Pin and VDRV Pin
      3. 6.3.3  Input Undervoltage Lockout (UVLO)
        1. 6.3.3.1 Fixed VCC_OK UVLO
        2. 6.3.3.2 Fixed VDRV UVLO
        3. 6.3.3.3 Programmable PVIN UVLO
        4. 6.3.3.4 Control (CNTL)Enable
      4. 6.3.4  Differential Remote Sense and Internal, External Feedback Divider
      5. 6.3.5  Set the Output Voltage and VORST#
      6. 6.3.6  Start-Up and Shutdown
      7. 6.3.7  Dynamic Voltage Slew Rate
      8. 6.3.8  Set Switching Frequency
      9. 6.3.9  Switching Node (SW)
      10. 6.3.10 Overcurrent Limit and Low-side Current Sense
      11. 6.3.11 Negative Overcurrent Limit
      12. 6.3.12 Zero-Crossing Detection
      13. 6.3.13 Input Overvoltage Protection
      14. 6.3.14 Output Overvoltage and Undervoltage Protection
      15. 6.3.15 Overtemperature Protection
      16. 6.3.16 Telemetry
    4. 6.4 Device Functional Modes
      1. 6.4.1 Forced Continuous-Conduction Mode
      2. 6.4.2 DCM Light Load Operation
      3. 6.4.3 Powering the Device From a 12V Bus
      4. 6.4.4 Powering the Device From a Split-rail Configuration
      5. 6.4.5 Pin Strapping
        1. 6.4.5.1 Programming MSEL1
        2. 6.4.5.2 Programming PMB_ADDR
        3. 6.4.5.3 Programming MSEL2
        4. 6.4.5.4 Programming VSEL\FB
    5. 6.5 Programming
      1. 6.5.1 Supported PMBus Commands
  8. Register Maps
    1. 7.1  Conventions for Documenting Block Commands
    2. 7.2  (01h) OPERATION
    3. 7.3  (02h) ON_OFF_CONFIG
    4. 7.4  (03h) CLEAR_FAULTS
    5. 7.5  (04h) PHASE
    6. 7.6  (09h) P2_PLUS_WRITE
    7. 7.7  (0Ah) P2_PLUS_READ
    8. 7.8  (0Eh) PASSKEY
    9. 7.9  (10h) WRITE_PROTECT
    10. 7.10 (15h) STORE_USER_ALL
    11. 7.11 (16h) RESTORE_USER_ALL
    12. 7.12 (19h) CAPABILITY
    13. 7.13 (1Bh) SMBALERT_MASK
    14. 7.14 (20h) VOUT_MODE
    15. 7.15 (21h) VOUT_COMMAND
    16. 7.16 (22h) VOUT_TRIM
    17. 7.17 (24h) VOUT_MAX
    18. 7.18 (25h) VOUT_MARGIN_HIGH
    19. 7.19 (26h) VOUT_MARGIN_LOW
    20. 7.20 (27h) VOUT_TRANSITION_RATE
    21. 7.21 (29h) VOUT_SCALE_LOOP
    22. 7.22 (2Ah) VOUT_SCALE_MONITOR
    23. 7.23 (2Bh) VOUT_MIN
    24. 7.24 (33h) FREQUENCY_SWITCH
    25. 7.25 (35h) VIN_ON
    26. 7.26 (36h) VIN_OFF
    27. 7.27 (39h) IOUT_CAL_OFFSET
    28. 7.28 (40h) VOUT_OV_FAULT_LIMIT
    29. 7.29 (41h) VOUT_OV_FAULT_RESPONSE
    30. 7.30 (42h) VOUT_OV_WARN_LIMIT
    31. 7.31 (43h) VOUT_UV_WARN_LIMIT
    32. 7.32 (44h) VOUT_UV_FAULT_LIMIT
    33. 7.33 (45h) VOUT_UV_FAULT_RESPONSE
    34. 7.34 (46h) IOUT_OC_FAULT_LIMIT
    35. 7.35 (48h) IOUT_OC_LV_FAULT_LIMIT
    36. 7.36 (49h) IOUT_OC_LV_FAULT_RESPONSE
    37. 7.37 (4Ah) IOUT_OC_WARN_LIMIT
    38. 7.38 (4Fh) OT_FAULT_LIMIT
    39. 7.39 (50h) OT_FAULT_RESPONSE
    40. 7.40 (51h) OT_WARN_LIMIT
    41. 7.41 (55h) VIN_OV_FAULT_LIMIT
    42. 7.42 (60h) TON_DELAY
    43. 7.43 (61h) TON_RISE
    44. 7.44 (64h) TOFF_DELAY
    45. 7.45 (65h) TOFF_FALL
    46. 7.46 (78h) STATUS_BYTE
    47. 7.47 (79h) STATUS_WORD
    48. 7.48 (7Ah) STATUS_VOUT
    49. 7.49 (7Bh) STATUS_IOUT
    50. 7.50 (7Ch) STATUS_INPUT
    51. 7.51 (7Dh) STATUS_TEMPERATURE
    52. 7.52 (7Eh) STATUS_CML
    53. 7.53 (7Fh) STATUS_OTHER
    54. 7.54 (80h) STATUS_MFR_SPECIFIC
    55. 7.55 (88h) READ_VIN
    56. 7.56 (8Bh) READ_VOUT
    57. 7.57 (8Ch) READ_IOUT
    58. 7.58 (8Dh) READ_TEMPERATURE_1
    59. 7.59 (98h) PMBUS_REVISION
    60. 7.60 (99h) MFR_ID
    61. 7.61 (9Ah) MFR_MODEL
    62. 7.62 (9Bh) MFR_REVISION
    63. 7.63 (ADh) IC_DEVICE_ID
    64. 7.64 (AEh) IC_DEVICE_REV
    65. 7.65 (D1h) SYS_CFG_USER1
    66. 7.66 (D2h) PMBUS_ADDR
    67. 7.67 (D4h) COMP
    68. 7.68 (D5h) VBOOT_OFFSET_1
    69. 7.69 (D6h) STACK_CONFIG
    70. 7.70 (D8h) PIN_DETECT_OVERRIDE
    71. 7.71 (D9h) NVM_CHECKSUM
    72. 7.72 (DAh) READ_TELEMETRY
    73. 7.73 (79h) STATUS_ALL
    74. 7.74 (DDh) EXT_WRITE_PROTECTION
    75. 7.75 (A4h) IMON_CAL
    76. 7.76 (FCh) FUSION_ID0
    77. 7.77 (FDh) FUSION_ID1
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Input Capacitor Selection
        2. 8.2.3.2 Inductor Selection
        3. 8.2.3.3 Output Capacitor Selection
        4. 8.2.3.4 Compensation Selection
        5. 8.2.3.5 VCC and VRDV Bypass Capacitors
        6. 8.2.3.6 BOOT Capacitor Selection
        7. 8.2.3.7 VOSNS and GOSNS Capacitor Selection
        8. 8.2.3.8 PMBus Address Resistor Selection
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Thermal Performance on TPS546C25EVM
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
  • VBD|33
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout Guidelines

Layout is critical for good power-supply design. Layout example shows the recommended PCB-layout configuration.

A list of PCB layout considerations using the device is listed as follows:

  • Place the power components (including input and output capacitors, the inductor, and the IC) on the top side of the PCB. To shield and isolate the small signal traces from noisy power lines, insert at least one solid ground inner plane.
  • PVIN-to-PGND decoupling capacitors are important for FET robustness. Besides the large volume 0603 or 0805 ceramic capacitors, TI highly recommends a 0.1µF 0402 ceramic capacitor with 25V / X7R rating on PVIN pin 20 (top layer) to bypass any high frequency current in PVIN to PGND loop. TI recommends the 25V rating, but the rating can be lowered to 16V rating for an application with tightly regulated 12V input bus.
  • When one or more PVIN-to-PGND decoupling capacitors are placed on bottom layer, extra impedance is introduced to bypass IC PVIN node to IC PGND node. Placing at least 3 times PVIN vias on PVIN pad (formed by pin 20 to pin 24) and at least 9 times PGND vias on the thermal pad (underneath of the IC) is important to minimize the extra impedance for the bottom layer bypass capacitors.
  • In addition to the PGND vias underneath the thermal pad, at least 4 PGND vias are required to be placed as close as possible to the PGND pin 7 to pin 10. At least 2 PGND vias are required to be placed as close as possible to the PGND pin 19. This action minimizes PGND bounces and also lowers thermal resistance.
  • Place the VDRV-to-PGND decoupling capacitor as close as possible to the device. TI recommends a 2.2µF/6.3V/X7R/0603 or 4.7µF/6.3V/X6S/0603 ceramic capacitor. The voltage rating of this bypass capacitor must be at least 6.3V but no more than 10V to lower ESR and ESL. The recommended capacitor size is 0603 to minimize the capacitance drop due to DC bias effect. Make sure the VDRV to PGND decoupling loop is the smallest and make sure the routing trace is wide enough to lower impedance.
  • Place the VCC-to-AGND decoupling capacitor on the same side and as close as possible to the IC. Connect VCC pin to VDRV pin with a 1ohm 0402 5% or better resistor. Placing a 1Ω resistor between the VCC pin and VDRV pin forms a RC filter on VCC pin, which greatly reduces the noise impact from power stage driver circuit. TI recommends a 2.2µF/6.3V/X7R/0603 or 4.7µF/6.3V/X6S/0603 ceramic capacitor. The voltage rating of this bypass capacitor must be at least 6.3V but no more than 10V to lower ESR and ESL.
  • For remote sensing, the connections from the VOSNS/GOSNS pins to the remote location must be a pair of PCB traces with at least 12 mil trace width, and must implement Kelvin sensing across a high bypass capacitor of 0.1μF or higher. The ground connection of the remote sensing signal must be connected to GOSNS pin. The VOUT connection of the remote sensing signal must be connected to the VOSNS pin. To maintain stable output voltage and minimize the ripple, the pair of remote sensing lines must stay away from any noise sources such as inductor and SW nodes, or high frequency clock lines. And TI recommends to shield the pair of remote sensing lines with ground planes above and below.
  • For single-end sensing, connect the VOSNS pin to a high-frequency local bypass capacitor of 0.1μF or higher, and short GOSNS to AGND with shortest trace.
  • The AGND must be connected to a solid PGND plane. TI recommends to place two AGND vias close to the pin to route AGND from top layer to bottom layer, and then connect the AGND trace to the PGND vias (underneath IC) through either a net-tie or a 0Ω resistor on the bottom layer.
  • Connecting a resistor from PMB_ADDR pin to AGND sets the address. Do not to have any capacitor on this pin. A capacitor on the pin likely leads to a wrong detection result for address.
  • When device is configured with an external voltage divider, the high side resistor connects from VOSNS to VSEL/FB pins and the low side feedback resistor connects to VSEL/FB to GOSNS pins near the device.
  • The return for the MSEL1 resistor, MSEL2 resistor, PMB_ADDR resistor and VSEL/FB resistor (when using internal feedback divider) is the quiet AGND island.