ZHCSFC5A August   2016  – September 2017 TPS549D22

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 40-A FET
      2. 7.3.2 On-Resistance
      3. 7.3.3 Package Size, Efficiency and Thermal Performance
      4. 7.3.4 Soft-Start Operation
      5. 7.3.5 VDD Supply Undervoltage Lockout (UVLO) Protection
      6. 7.3.6 EN_UVLO Pin Functionality
      7. 7.3.7 Fault Protections
        1. 7.3.7.1 Current Limit (ILIM) Functionality
        2. 7.3.7.2 VDD Undervoltage Lockout (UVLO)
        3. 7.3.7.3 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)
        4. 7.3.7.4 Out-of-Bounds Operation
        5. 7.3.7.5 Overtemperature Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 DCAP3 Control Topology
      2. 7.4.2 DCAP Control Topology
    5. 7.5 Programming
      1. 7.5.1 Programmable Pin-Strap Settings
        1. 7.5.1.1 Address Selection (ADDR) Pin
        2. 7.5.1.2 VSEL Pin
        3. 7.5.1.3 DCAP3 Control and Mode Selection
        4. 7.5.1.4 Application Workaround to Support 4-ms and 8-ms SS Settings
      2. 7.5.2 Programmable Analog Configurations
        1. 7.5.2.1 RSP/RSN Remote Sensing Functionality
          1. 7.5.2.1.1 Output Differential Remote Sensing Amplifier
        2. 7.5.2.2 Power Good (PGOOD Pin) Functionality
      3. 7.5.3 PMBus Programming
        1. 7.5.3.1 TPS549D22 Limitations to the PMBUS Specifications
        2. 7.5.3.2 Slave Address Assignment
        3. 7.5.3.3 PMBUS Address Selection
        4. 7.5.3.4 Supported Formats
          1. 7.5.3.4.1 Direct Format — Write
          2. 7.5.3.4.2 Combined Format — Read
        5. 7.5.3.5 Stop Separated Reads
        6. 7.5.3.6 Supported PMBUS Commands and Registers
      4. 7.5.4 Register Maps
        1. 7.5.4.1  OPERATION Register (address = 1h)
        2. 7.5.4.2  ON_OFF_CONFIG Register (address = 2h)
        3. 7.5.4.3  CLEAR FAULTS (address = 3h)
        4. 7.5.4.4  WRITE PROTECT (address = 10h)
        5. 7.5.4.5  STORE_DEFAULT_ALL (address = 11h)
        6. 7.5.4.6  RESTORE_DEFAULT_ALL (address = 12h)
        7. 7.5.4.7  CAPABILITY (address = 19h)
        8. 7.5.4.8  VOUT_MODE (address = 20h)
        9. 7.5.4.9  VOUT_COMMAND (address = 21h)
        10. 7.5.4.10 VOUT_MARGIN_HIGH (address = 25h)
        11. 7.5.4.11 VOUT_MARGIN_LOW (address = 26h)
        12. 7.5.4.12 STATUS_BYTE (address = 78h)
        13. 7.5.4.13 STATUS_WORD (High Byte) (address = 79h)
        14. 7.5.4.14 STATUS_VOUT (address = 7Ah)
        15. 7.5.4.15 STATUS_IOUT (address = 7Bh)
        16. 7.5.4.16 STATUS_CML (address = 7Eh)
        17. 7.5.4.17 MFR_SPECIFIC_00 (address = D0h)
        18. 7.5.4.18 MFR_SPECIFIC_01 (address = D1h)
        19. 7.5.4.19 MFR_SPECIFIC_02 (address = D2h)
        20. 7.5.4.20 MFR_SPECIFIC_03 (address = D3h)
        21. 7.5.4.21 MFR_SPECIFIC_04 (address = D4h)
        22. 7.5.4.22 MFR_SPECIFIC_06 (address = D6h)
        23. 7.5.4.23 MFR_SPECIFIC_07 (address = D7h)
        24. 7.5.4.24 MFR_SPECIFIC_44 (address = FCh)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: TPS549D22 1.5-V to 16-V Input, 1-V Output, 40-A Converter
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Switching Frequency Selection
        3. 8.2.2.3  Inductor Selection
        4. 8.2.2.4  Output Capacitor Selection
          1. 8.2.2.4.1 Minimum Output Capacitance to Ensure Stability
          2. 8.2.2.4.2 Response to a Load Transient
          3. 8.2.2.4.3 Output Voltage Ripple
        5. 8.2.2.5  Input Capacitor Selection
        6. 8.2.2.6  Bootstrap Capacitor Selection
        7. 8.2.2.7  BP Pin
        8. 8.2.2.8  R-C Snubber and VIN Pin High-Frequency Bypass
        9. 8.2.2.9  Optimize Reference Voltage (VSEL)
        10. 8.2.2.10 MODE Pin Selection
        11. 8.2.2.11 ADDR Pin Selection
        12. 8.2.2.12 Overcurrent Limit Design
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Mounting and Thermal Profile Recommendation
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 使用 WEBENCH® 工具定制设计方案
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 Glossary
  12. 12机械、封装和可订购信息
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information
      2. 12.1.2 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
Input voltage PVIN –0.3 25 V
VDD –0.3 25
BOOT –0.3 34
BOOT to SW DC –0.3 7.7
< 10 ns –0.3 9.0
PMB_CLK, PMB_DATA –0.3 6
EN_UVLO, VOSNS, MODE, ADDR, ILIM –0.3 7.7
RSP, RESV_TRK, VSEL –0.3 3.6
RSN –0.3 0.3
PGND, AGND, DRGND –0.3 0.3
SW DC –0.3 25
< 10 ns –5 27
Output voltage PGOOD, BP –0.3 7.7 V
Output voltage SMB_ALRT#, PMB_DATA –0.3 6 V
Junction temperature, TJ –55 150 °C
Storage temperature, Tstg –55 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to the network ground terminal unless otherwise noted.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage PVIN 1.5 16 V
VDD 4.5 22
BOOT –0.1 24.5
BOOT to SW DC –0.1 6.5
< 10 ns –0.1 7
PMB_CLK, PMB_DATA –0.1 5.5
EN_UVLO, VOSNS, MODE, ADDR, ILIM –0.1 5.5
RSP, RESV_TRK, VSEL –0.1 3.3
RSN –0.1 0.1
PGND, AGND, DRGND –0.1 0.1
SW DC –0.1 18
< 10 ns –5 27
Output voltage PGOOD, BP –0.1 7 V
Output voltage SMB_ALRT#, PMB_DATA –0.1 5.5 V
Junction temperature, TJ –40 125 °C

Thermal Information

THERMAL METRIC(1) TPS549D22 UNIT
RVF (LQFN-CLIP)
(40 PINS)
RθJA Junction-to-ambient thermal resistance 28.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.3 °C/W
RθJB Junction-to-board thermal resistance 3.6 °C/W
ψJT Junction-to-top characterization parameter 0.96 °C/W
ψJB Junction-to-board characterization parameter 3.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.6 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
MOSFET ON-RESISTANCE (RDS(on))
RDS(on) High-side FET (VBOOT – VSW) = 5 V, ID = 25 A, TJ = 25°C 2.9
Low-side FET VVDD = 5 V, ID = 25 A, TJ = 25°C 1.2
INPUT SUPPLY AND CURRENT
VVDD VDD supply voltage Nominal VDD voltage range 4.5 22 V
IVDD VDD bias current No load, power conversion enabled (no switching), TA = 25°C, 2 mA
IVDDSTBY VDD standby current No load, power conversion disabled, TA = 25°C 700 µA
UNDERVOLTAGE LOCKOUT
VVDD_UVLO VDD UVLO rising threshold 4.23 4.25 4.34 V
VVDD_UVLO(HYS) VDD UVLO hysteresis 0.2 V
VEN_ON_TH EN_UVLO on threshold 1.45 1.6 1.75 V
VEN_HYS EN_UVLO hysteresis 270 300 340 mV
IEN_LKG EN_UVLO input leakage current VEN_UVLO = 5 V –1 0 1 µA
INTERNAL REFERENCE VOLTAGE AND RANGE
VINTREF Internal REF voltage 900.4 mV
VINTREFTOL Internal REF voltage tolerance –40°C ≤ TJ ≤ 125°C –0.5% 0.5%
VINTREF Internal REF voltage range 0.6 1.2 V
OUTPUT VOLTAGE
VIOS_LPCMP Loop comparator input offset voltage(1) –2.5 2.5 mV
IRSP RSP input current VRSP = 600 mV –1 1 µA
IVO(dis) VO discharge current VVO = 0.5 V, power conversion disabled 8 12 mA
DIFFERENTIAL REMOTE SENSE AMPLIFIER
fUGBW Unity gain bandwidth(1) 5 7 MHz
A0 Open loop gain(1) 75 dB
SR Slew rate(1) ±4.7 V/µsec
VIRNG Input range(1) –0.2 1.8 V
VOFFSET Input offset voltage(1) –3.5 3.5 mV
INTERNAL BOOT STRAP SWITCH
VF Forward voltage VBP-BOOT, IF = 10 mA, TA = 25°C 0.1 0.2 V
IBOOT VBST leakage current VBOOT = 30 V, VSW = 25 V, TA = 25°C 0.01 1.5 µA
SWITCHING FREQUENCY
fSW VO switching frequency(2) VIN = 12 V, VVO = 1 V, TA = 25°C 275 315 350 kHz
380 425 475
490 550 615
585 650 740
740 825 930
790 900 995
920 1025 1160
950 1125 1250
tON(min) Minimum on time(1) 60 ns
tOFF(min) Minimum off time(1) DRVH falling to rising 300 ns
MODE, VSEL, ADDR DETECTION
VDETECT_TH MODE, VSEL, and ADDR detection voltage VBP = 2.93 V,
RHIGH = 100 kΩ
Open VBP V
RLOW = 187 kΩ 1.9091
RLOW = 165 kΩ 1.8243
RLOW = 147 kΩ 1.7438
RLOW = 133 kΩ 1.6725
RLOW = 121 kΩ 1.6042
RLOW = 110 kΩ 1.5348
RLOW = 100 kΩ 1.465
RLOW = 90.9 kΩ 1.3952
RLOW = 82.5 kΩ 1.3245
RLOW = 75 kΩ 1.2557
RLOW = 68.1 kΩ 1.187
RLOW = 60.4 kΩ 1.1033
RLOW = 53.6 kΩ 1.0224
RLOW = 47.5 kΩ 0.9436
RLOW = 42.2 kΩ 0.8695
RLOW = 37.4 kΩ 0.7975
RLOW = 33.2 kΩ 0.7303
RLOW = 29.4 kΩ 0.6657
RLOW = 25.5 kΩ 0.5953
RLOW = 22.1 kΩ 0.5303
RLOW = 19.1 kΩ 0.4699
RLOW = 16.5 kΩ 0.415
RLOW = 14.3 kΩ 0.3666
RLOW = 12.1 kΩ 0.3163
RLOW = 10 kΩ 0.2664
RLOW = 7.87 kΩ 0.2138
RLOW = 6.19 kΩ 0.1708
RLOW = 4.64 kΩ 0.1299
RLOW = 3.16 kΩ 0.0898
RLOW = 1.78 kΩ 0.0512
RLOW = 0 Ω GND
SOFT START
tSS Soft-start time VOUT rising from 0 V to 95% of final set point, RMODE_HIGH = 100 kΩ RMODE_LOW = 60.4 kΩ 7 8(3) 10 ms
RMODE_LOW = 53.6 kΩ 3.6 4(4) 5.2
RMODE_LOW = 47.5 kΩ 1.6 2 2.8
RMODE_LOW = 42.2 kΩ 0.8 1 1.6
POWER-ON DELAY
tPODLY Power-on delay time Delay from enable to switching POD[2:0] = 000 256 µs
Delay from enable to switching POD[2:0] = 001 512
Delay from enable to switching POD[2:0] = 010 1.024 ms
Delay from enable to switching POD[2:0] = 011 2.048
Delay from enable to switching POD[2:0] = 100 4.096
Delay from enable to switching POD[2:0] = 101 8.192
Delay from enable to switching POD[2:0] = 110 16.384
Delay from enable to switching POD[2:0] = 111 32.768
PGOOD COMPARATOR
VPGTH PGOOD threshold PGOOD in from higher 105 108 111 %VREF
PGOOD in from lower 89 92 95
PGOOD out to higher 120
PGOOD out to lower 68
IPG PGOOD sink current VPGOOD = 0.5 V 6.9 mA
tPGDLY PGOOD delay time Delay for PGOOD going in, PGD[2:0] = 000 256 µs
Delay for PGOOD going in, PGD[2:0] = 001 512
Delay for PGOOD going in, PGD[2:0] = 010 1.024 ms
Delay for PGOOD going in, PGD[2:0] = 011 2.048
Delay for PGOOD going in, PGD[2:0] = 100 4.096
Delay for PGOOD going in, PGD[2:0] = 101 8.192
Delay for PGOOD going in, PGD[2:0] = 110 16.384
Delay for PGOOD going in, PGD[2:0] = 111 131
Delay for PGOOD coming out 2 µs
IPGLK PGOOD leakage current VPGOOD = 5 V –1 0 1 μA
CURRENT DETECTION
VILM VILIM voltage range On-resistance (RDS(on)) sensing 0.1 1.2 V
IOCL_VA Valley current limit threshold RLIM = 130 kΩ 40 A
OC tolerance ±10%(5)
RLIM = 97.6 kΩ 30 A
OC tolerance ±15%(5)
RLIM = 64.9 kΩ 20 A
OC tolerance ±20%
IOCL_VA_N Negative valley current limit threshold RLIM = 130 kΩ –40 A
RLIM = 97.6 kΩ –30
RLIM = 64.9 kΩ –20
ICLMP_LO Clamp current at VLIM clamp at lowest VILIM_CLMP = 0.1 V, TA = 25°C 6.25 A
ICLMP_HI Clamp current at VLIM clamp at highest VILIM_CLMP = 1.2 V, TA = 25°C 75 A
VZC Zero cross detection offset 0 mV
PROTECTIONS AND OOB
VBPUVLO BP UVLO threshold voltage Wake-up 3.32 V
Shutdown 3.11
VOVP OVP threshold voltage OVP detect voltage 117% 120% 123% VREF
tOVPDLY OVP response time 100-mV over drive 1 µs
VUVP UVP threshold voltage UVP detect voltage 65% 68% 71% VREF
tUVPDLY UVP delay filter delay time 1 ms
VOOB OOB threshold voltage 8% VREF
tHICDLY Hiccup blanking time tSS = 1 ms 16 ms
tSS = 2 ms 24 ms
tSS = 4 ms 38 ms
tSS = 8 ms 67 ms
BP VOLTAGE
VBP BP LDO output voltage VIN = 12 V, 0 A ≤ ILOAD ≤ 10 mA, 5.07 V
VBPDO BP LDO dropout voltage VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C 365 mV
IBPMAX BP LDO overcurrent limit VIN = 12 V, TA = 25°C 100 mA
PMB_CLK and PMB_DATA INPUT BUFFER LOGIC THRESHOLDS
VIL-PMBUS PMB_CLK and PMB_DATA low-level input voltage(1) 0.8 V
VIH-PMBUS PMB_CLK and PMB_DATA high-level input voltage(1) 1.35 V
VHY-PMBUS PMB_CLK and PMB_DATA hysteresis voltage(1) 150 mV
PMB_CLK and SMB_ALRT OUTPUT PULLDOWN
VOL-PMBUS PMB_DATA and SMB_ALRT low-level output voltage(1) ISINK = 20 mA 0.4 V
THERMAL SHUTDOWN
TSDN Built-In thermal shutdown threshold(1) Shutdown temperature 155 165 °C
Hysteresis 30
Specified by design. Not production tested.
Correlated with close loop EVM measurement at load current of 30 A.
In order to use the 8-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.
In order to use the 4-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.
Calculated from 20-A test data. Not production tested.

Typical Characteristics

TPS549D22 D011_SLUSC70.gif
VOUT = 1 V SKIP Mode fSW = 650 kHz
VDD = 5 V
Figure 1. Efficiency vs Output Current
TPS549D22 D013_slusc70.gif
VOUT = 5.5 V SKIP Mode fSW = 425 kHz
VDD = 5 V
Figure 3. Efficiency vs Output Current
TPS549D22 figure5_thermal_slusc70.png
VIN = 12 V fSW = 650 kHz IOUT = 40 A
VOUT = 1 V Natural convection
Figure 5. Thermal Image
TPS549D22 figure7_thermal_slusc70.png
VIN = 12 V fSW = 650 kHz IOUT = 40 A
VOUT = 1 V Airflow = 400 LFM
Figure 7. Thermal Image
TPS549D22 figure9_thermal_slusc70.png
VIN = 12 V fSW = 425 kHz IOUT = 30 A
VOUT = 5.5 V Airflow = 200 LFM
Figure 9. Thermal Image
TPS549D22 wave_7_p2p_2.png
VOUT = 1 V VIN = 12 V
IOUT from 8 A to 32 A 2.5 A/µs
Figure 11. Transient Response Peak-to-Peak
TPS549D22 D012_SLUSC70.gif
VOUT = 1 V FCCM fSW = 650 kHz
VDD = 5 V
Figure 2. Efficiency vs Output Current
TPS549D22 D014_slusc70.gif
VOUT = 5.5 V FCCM fSW = 425 kHz
VDD = 5 V
Figure 4. Efficiency vs Output Current
TPS549D22 figure6_thermal_slusc70.png
VIN = 12 V fSW = 650 kHz IOUT = 40 A
VOUT = 1 V Airflow = 200 LFM
Figure 6. Thermal Image
TPS549D22 figure8_thermal_slusc70.png
VIN = 12 V fSW = 425 kHz IOUT = 30 A
VOUT = 5.5 V Natural convection
Figure 8. Thermal Image
TPS549D22 figure10_thermal_slusc70.png
VIN = 12 V fSW = 425 kHz IOUT = 30 A
VOUT = 5.5 V Airflow = 400 LFM
Figure 10. Thermal Image
TPS549D22 wave_8_p2p_4.png
VOUT = 5.5 V VIN = 12 V
IOUT from 6 A to 24 A 2.5 A/µs
Figure 12. Transient Response Peak-to-Peak
TPS549D22 scope_shot_01_slusci9.gif
Figure 13. PMBus 1-MHz Bus Speed with 1.8-V Pullup
TPS549D22 scope_shot_03_slusci9.gif
1 – Operation only 4 – Vout Command up to 1.2 V
2 – Turn off 5 – Vout Command down to 0.6 V
3 – Turn on without Margin 6 – Turn off
Figure 15. 6 Sequenced Events – I2C Write/Read
TPS549D22 scope_shot_05_slusci9.gif
1 – Operation only 4 – 16 Vout Command up to 1.2 V,
2 – Turn off 50 mV per step down to 0.6 V
3 – Turn on without Margin 17 – Turn off
Figure 17. 17 Sequenced Events – I2C Write
TPS549D22 scope_shot_07_slusci9.gif
1 – Operation only 4 – 16 Vout Command up to 1.2 V,
2 – Turn off 50 mV per step down to 0.6 V
3 – Turn on without Margin 17 – Turn off
Figure 19. 17 Sequenced Events – I2C Write/Read with PEC
TPS549D22 scope_shot_09_slusci9.gif
1 – Operation only 4 – 16 Vout Command up to 1.2 V,
2 – Turn off 50 mV per step down to 0.6 V
3 – Turn on without Margin 17 – 28 Vout Command from 0.6 V
to 1.2 V, 50 mV per step
29 – Turn off
Figure 21. 29 Sequenced Events – I2C Write/Read
TPS549D22 scope_shot_02_slusci9.gif
1 – Operation only 4 – Vout Command up to 1.2 V
2 – Turn off 5 – Vout Command down to 0.6 V
3 – Turn on without Margin 6 – Turn off
Figure 14. 6 Sequenced Events – I2C Write
TPS549D22 scope_shot_04_slusci9.gif
1 – Operation only 4 – Vout Command up to 1.2 V
2 – Turn off 5 – Vout Command down to 0.6 V
3 – Turn on without Margin 6 – Turn off
Figure 16. 6 Sequenced Events – I2C Write/Read with PEC
TPS549D22 scope_shot_06_slusci9.gif
1 – Operation only 4 – 16 Vout Command up to 1.2 V,
2 – Turn off 50 mV per step down to 0.6 V
3 – Turn on without Margin 17 – Turn off
Figure 18. 17 Sequenced Events – I2C Write/Read
TPS549D22 scope_shot_08_slusci9.gif
1 – Operation only 4 – 16 Vout Command up to 1.2 V,
2 – Turn off 50 mV per step down to 0.6 V
3 – Turn on without Margin 17 – 28 Vout Command from 0.6 V
to 1.2 V, 50 mV per step
29 – Turn off
Figure 20. 29 Sequenced Events – I2C Write
TPS549D22 scope_shot_10_slusci9.gif
1 – Operation only 4 – 16 Vout Command up to 1.2 V,
2 – Turn off 50 mV per step down to 0.6 V
3 – Turn on without Margin 17 – 28 Vout Command from 0.6 V
to 1.2 V, 50 mV per step
29 – Turn off
Figure 22. 29 Sequenced Events – I2C Write/Read with PEC