ZHCSP84A december   2022  – may 2023 TPS564252 , TPS564255 , TPS564257

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Operation and D-CAP3™ Control Mode
      2. 7.3.2 Eco-mode Control
      3. 7.3.3 Soft Start and Prebiased Soft Start
      4. 7.3.4 Overvoltage Protection
      5. 7.3.5 Large Duty Operation
      6. 7.3.6 Current Protection and Undervoltage Protection
      7. 7.3.7 Undervoltage Lockout (UVLO) Protection
      8. 7.3.8 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Eco-mode Operation
      2. 7.4.2 FCCM Mode Operation
      3. 7.4.3 OOA Mode Operation
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design with WEBENCH® Tools
        2. 8.2.2.2 Output Voltage Resistors Selection
        3. 8.2.2.3 Output Filter Selection
        4. 8.2.2.4 Input Capacitor Selection
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Custom Design with WEBENCH® Tools
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 Trademarks
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Output Filter Selection

The LC filter used as the output filter has a double pole at Equation 4. In this equation, COUT uses its effective value after derating, not its nominal value.

Equation 4. GUID-75C9B671-2032-4F17-92A3-6C909D7396B5-low.gif

For any control topology that is compensated internally, there is a range of the output filter it can support. At low frequency, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40 dB per decade rate and the phase drops has a 180 degree drop. The internal ripple generation network introduces a high-frequency zero that reduces the gain roll off from –40 dB to –20 dB per decade and leads the 90 degree phase boost. The internal ripple injection high-frequency zero is about 66kHz. The inductor and capacitor selected for the output filter is recommended such that the double pole is located approximately 20kHz, so that the phase boost provided by this high-frequency zero provides adequate phase margin for the stability requirement. The crossover frequency of the overall system is usually targeted to be less than one-third of the switching frequency (fSW). For high output voltage condition, TI recommends to use 10-100pF feedforward capacitor(C7 in Figure 8-1) for enough phase margin.

Table 8-2 Recommended Component Values
Output Voltage (V) R4 (kΩ) R5 (kΩ) Typical L1 (μH) Typical COUT (μF) Nominal Value Range Recommended COUT (μF) Typical COUT Category Typical C7 (pF)
0.6 0 10.0 1.2 66-154 66 MLCC, 0805, 10V
1.05 7.5 10.0 1.5 44-66 44 MLCC, 0805, 10V
2.2 26.0 10.0 2.2 22-88 44 MLCC, 0805, 10V 90
3.3 45.0 10.0 3.3 22-88 44 MLCC, 0805, 10V 30
5 220.0 30.0 4.7 22-88 44 MLCC, 0805, 10V 30
10 470 30.0 6.8 44-88 44 MLCC, 0805, 16V 36

The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using Equation 5, Equation 6, and Equation 7. Generally, TI recommends the peak-to-peak ripple current to be 20% – 50% of output average current for a comprehensive benefit of efficiency and inductor volume. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current.

Equation 5. GUID-C3150711-BA14-43CA-AFBE-BEBFAB8C2341-low.gif
Equation 6. GUID-64C06B84-40ED-4173-87FC-36A496B452E8-low.gif
Equation 7. GUID-F9038776-F0F7-46C9-B5D5-5BB2E9960385-low.gif

For this design example, the calculated peak current is 4.545 A and the calculated RMS current is 4.146 A. The inductor used is 74437349015 with 8-A rated current and 14.5-A saturation current.

The capacitor value and ESR determines the amount of output voltage ripple. The TPS56425x are intended for use with ceramic or other low-ESR capacitors. Use Equation 8 to determine the required RMS current rating for the output capacitor.

Equation 8. GUID-2E464547-0BD4-48F3-87EA-FACC0B8CF028-low.gif

For this design, two MuRata GRM21BR61A226ME44L 22-µF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS current is 0.32 A and each output capacitor is rated for 4 A.