ZHCSCN2 July   2014 TPS57114-EP

PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 简化电路原理图
  5. 修订历史记录
  6. 说明(续)
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 Handling Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Fixed-Frequency Pwm Control
      2. 9.3.2  Slope Compensation and Output Current
      3. 9.3.3  Bootstrap Voltage (Boot) and Low-Dropout Operation
      4. 9.3.4  Error Amplifier
      5. 9.3.5  Voltage Reference
      6. 9.3.6  Adjusting the Output Voltage
      7. 9.3.7  Enable Functionality and Adjusting UVLO
      8. 9.3.8  Slow-Start or Tracking Pin
      9. 9.3.9  Constant Switching Frequency and Timing Resistor (RT/CLK Pin)
      10. 9.3.10 Overcurrent Protection
      11. 9.3.11 Frequency Shift
      12. 9.3.12 Reverse Overcurrent Protection
      13. 9.3.13 Synchronize Using the RT/CLK Pin
      14. 9.3.14 Power Good (PWRGD Pin)
      15. 9.3.15 Overvoltage Transient Protection (OVTP)
      16. 9.3.16 Thermal Shutdown
      17. 9.3.17 Small-Signal Model for Loop Response
      18. 9.3.18 Simple Small-Signal Model for Peak-Current Mode Control
      19. 9.3.19 Small-Signal Model for Frequency Compensation
    4. 9.4 Device Functional Modes
      1. 9.4.1 RT (Resistor Timing) Mode
      2. 9.4.2 CLK (External Clock) Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Sequencing
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Selecting the Switching Frequency
        2. 10.2.2.2 Output Inductor Selection
        3. 10.2.2.3 Output Capacitor
        4. 10.2.2.4 Input Capacitor
        5. 10.2.2.5 Slow-Start Capacitor
        6. 10.2.2.6 Bootstrap Capacitor Selection
        7. 10.2.2.7 Output-Voltage and Feedback-Resistor Selection
        8. 10.2.2.8 Compensation
        9. 10.2.2.9 Power-Dissipation Estimate
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 Trademarks
    2. 13.2 Electrostatic Discharge Caution
    3. 13.3 术语表
  14. 14机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 说明(续)

频率折返和热关断功能负责在过流情况下保护器件。

此 SwitcherPro ™ 软件工具,可从www.ti.com/switcherpro内获得,并且支持 TPS57114-EP。

要获得更多 SWIFT ™ 文档,请参见 TI 网站 www.ti.com/swift

TPS57114-EP 是一款电流模式控制器,可支持降压转换器配置等多种拓扑结构。

电流模式控制是一种双环路系统。 开关电源电感器隐藏在内部电流控制环路中。 这样可以简化外部电压控制环路的设计并通过多种方式改善电源性能,包括优化动态特性。 这种内部环路的目的是控制状态空间平均的电感器电流,但实际上,电感器瞬时峰值电流是控制的基础(通常检测开关电流,等效于导通期间的电感器电流)。 如果电感器纹波电流较小,电感器峰值电流控制则几乎等效于电感器平均电流控制。

电感器峰值电流控制方法的工作原理是,比较电感器电流(或开关电流)的上升斜率与外部环路设定的电流编程级别。 当瞬时电流达到所需级别时,比较器将关闭电源开关。 相比编程级别而言,电流斜坡通常较小,尤其是在 VIN 较低时。 因此,此方法极易受噪声干扰。 每次接通开关时,都会生成一个噪声尖峰。 控制电路中加上零点几伏的电压就可能导致开关立即关断,从而进入纹波电流更大的次谐波运行模式。 电路布局和旁路对于成功运行至关重要。

峰值电流模式控制方法本身在占空比超过 0.5 之后非常不稳定,可能导致次谐波振荡。 比较器输入端通常应用补偿斜坡(上升斜率等于电感器电流的下降斜率),以消除这种不稳定性。 必须将斜率补偿添加到检测电流波形中,或从控制电压中减去,以确保占空比超过 50% 时的稳定性。 比较器输入端通常应用补偿斜坡(上升斜率等于电感器电流的下降斜率),以消除这种不稳定性。 电流限值控制设计具备诸多优势:

  • 电流模式控制提供开关峰值电流限制功能,即逐脉冲限流。
  • 由于输出电感器已被推到更高频率,因此控制环路可简化为单极,这样便可以将一个双极系统变成两个实极点。 这样系统就可以降为一阶系统,从而简化控制。
  • 可以并行连接多个转换器,并允许各个转换器之间共享等量的电流。
  • 由于输入电压出现任何扰动都会反映在开关或电感器电流中,因此,开关内部提供输入电压前馈。 由于开关或电感器电流是直接控制输入,因此可以快速修复扰动问题。
  • 误差放大器输出(外部控制环路)定义了一次电流(内部环路)调节脉冲持续时间和输出电压的级别。