ZHCSG38A March   2017  – November 2022 TPS65263-1Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Adjusting the Output Voltage
      2. 7.3.2  Enable and Adjusting UVLO
      3. 7.3.3  Soft-Start Time
      4. 7.3.4  Power-Up Sequencing
      5. 7.3.5  V7V Low-Dropout Regulator and Bootstrap
      6. 7.3.6  Out-of-Phase Operation
      7. 7.3.7  Output Overvoltage Protection (OVP)
      8. 7.3.8  PSM
      9. 7.3.9  Slope Compensation
      10. 7.3.10 Overcurrent Protection
        1. 7.3.10.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.10.2 Low-Side MOSFET Overcurrent Protection
      11. 7.3.11 Power Good
        1. 7.3.11.1 Adjustable Switching Frequency
      12. 7.3.12 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Serial Interface Description
      2. 7.4.2 I2C Update Sequence
    5. 7.5 Register Maps
      1. 7.5.1 VOUT2_SEL: Vout2 Voltage Selection Register (Address = 0x01H)
      2. 7.5.2 VOUT1_COM: Buck1 Command Register (offset = 0x03H)
      3. 7.5.3 VOUT2_COM: Buck2 Command Register (offset = 0x04H)
      4. 7.5.4 VOUT3_COM: Buck3 Command Register (offset = 0x05H)
      5. 7.5.5 SYS_STATUS: System Status Register (offset = 0x06H)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Inductor Selection
        2. 8.2.2.2 Output Capacitor Selection
        3. 8.2.2.3 Input Capacitor Selection
        4. 8.2.2.4 Loop Compensation
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 接收文档更新通知
    2. 9.2 支持资源
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 术语表
  10. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Serial Interface Description

I2C is a 2-wire serial interface developed by NXP Semiconductor (see I2C-Bus Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus through open-drain I/O pins, SDA and SCL. A controller device, usually a microcontroller or a digital signal processor, controls the bus. The controller is responsible for generating the SCL signal and device addresses. The controller also generates specific conditions that indicate the START and STOP of data transfer. A target device receives and/or transmits data on the bus under control of the controller device.

The TPS65263-1Q1 device works as a target and supports the following data transfer modes, as defined in the I2C-Bus Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the power-supply solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as supply voltage remains above 3.8 V (typical).

The data transfer protocol for standard and fast modes is exactly the same. Therefore, they are referred to as F/S-mode in this document. The TPS65263-1Q1 device supports 7-bit addressing. 10-bit addressing and general call address are not supported.

GUID-A332B38E-C707-4756-B2E0-DCB026D3C84F-low.gifFigure 7-14 I2C Interface Timing Diagram