ZHCSEF7G December   2014  – February 2019 TPS659037

PRODUCTION DATA.  

  1. 器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
    4. 1.4 简化方框图
  2. 修订历史记录
  3. Pin Configuration and Functions
    1.     Pin Functions
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Information
    5. 4.5  Electrical Characteristics: Latch Up Rating
    6. 4.6  Electrical Characteristics: LDO Regulator
    7. 4.7  Electrical Characteristics: Dual-Phase (SMPS12 and SMPS45) and Triple-Phase (SMPS123 and SMPS457) Regulators
    8. 4.8  Electrical Characteristics: Stand-Alone Regulators (SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9)
    9. 4.9  Electrical Characteristics: Reference Generator (Bandgap)
    10. 4.10 Electrical Characteristics: 16-MHz Crystal Oscillator, 32-kHz RC Oscillator, and Output Buffers
    11. 4.11 Electrical Characteristics: DC-DC Clock Sync
    12. 4.12 Electrical Characteristics: 12-Bit Sigma-Delta ADC
    13. 4.13 Electrical Characteristics: Thermal Monitoring and Shutdown
    14. 4.14 Electrical Characteristics: System Control Threshold
    15. 4.15 Electrical Characteristics: Current Consumption
    16. 4.16 Electrical Characteristics: Digital Input Signal Parameters
    17. 4.17 Electrical Characteristics: Digital Output Signal Parameters
    18. 4.18 Electrical Characteristics: I/O Pullup and Pulldown
    19. 4.19 I2C Interface Timing Requirements
    20. 4.20 SPI Timing Requirements
    21. 4.21 Typical Characteristics
  5. Detailed Description
    1. 5.1 Overview
    2. 5.2 Functional Block Diagram
    3. 5.3 Feature Description
      1. 5.3.1  Power Management
      2. 5.3.2  Power Resources (Step-Down and Step-Up SMPS Regulators, LDOs)
        1. 5.3.2.1 Step-Down Regulators
          1. 5.3.2.1.1 Sync Clock Functionality
          2. 5.3.2.1.2 Output Voltage and Mode Selection
          3. 5.3.2.1.3 Current Monitoring and Short Circuit Detection
          4. 5.3.2.1.4 POWERGOOD
          5. 5.3.2.1.5 DVS-Capable Regulators
          6. 5.3.2.1.6 Non DVS-Capable Regulators
          7. 5.3.2.1.7 Step-Down Converters SMPS12 and SMPS123
            1.         a. Dual-Phase SMPS and Stand-Alone SMPS
            2.         b. Triple Phase SMPS
          8. 5.3.2.1.8 Step-Down Converter SMPS45 and SMPS457
          9. 5.3.2.1.9 Step-Down Converters SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9
        2. 5.3.2.2 LDOs – Low Dropout Regulators
          1. 5.3.2.2.1 LDOVANA
          2. 5.3.2.2.2 LDOVRTC
          3. 5.3.2.2.3 LDO Bypass (LDO9)
          4. 5.3.2.2.4 LDOUSB
          5. 5.3.2.2.5 Other LDOs
      3. 5.3.3  Long-Press Key Detection
      4. 5.3.4  RTC
        1. 5.3.4.1 General Description
        2. 5.3.4.2 Time Calendar Registers
          1. 5.3.4.2.1 TC Registers Read Access
          2. 5.3.4.2.2 TC Registers Write Access
        3. 5.3.4.3 RTC Alarm
        4. 5.3.4.4 RTC Interrupts
        5. 5.3.4.5 RTC 32-kHz Oscillator Drift Compensation
      5. 5.3.5  GPADC – 12-Bit Sigma-Delta ADC
        1. 5.3.5.1 Asynchronous Conversion Request (SW)
        2. 5.3.5.2 Periodic Conversion Request (AUTO)
        3. 5.3.5.3 Calibration
      6. 5.3.6  General-Purpose I/Os (GPIO Pins)
        1. 5.3.6.1 REGEN Output
      7. 5.3.7  Thermal Monitoring
        1. 5.3.7.1 Hot-Die Function (HD)
        2. 5.3.7.2 Thermal Shutdown (TS)
        3. 5.3.7.3 Temperature Monitoring With External NTC Resistor or Diode
      8. 5.3.8  Interrupts
      9. 5.3.9  Control Interfaces
        1. 5.3.9.1 I2C Interfaces
          1. 5.3.9.1.1 I2C Implementation
          2. 5.3.9.1.2 F/S Mode Protocol
          3. 5.3.9.1.3 HS Mode Protocol
        2. 5.3.9.2 Serial-Peripheral Interface (SPI)
          1. 5.3.9.2.1 SPI Modes
          2. 5.3.9.2.2 SPI Protocol
      10. 5.3.10 Device Identification
    4. 5.4 Device Functional Modes
      1. 5.4.1  Embedded Power Controller
      2. 5.4.2  State Transition Requests
        1. 5.4.2.1 ON Requests
        2. 5.4.2.2 OFF Requests
        3. 5.4.2.3 SLEEP and WAKE Requests
      3. 5.4.3  Power Sequences
      4. 5.4.4  Startup Timing and RESET_OUT Generation
      5. 5.4.5  Power On Acknowledge
        1. 5.4.5.1 POWERHOLD Mode
        2. 5.4.5.2 AUTODEVON Mode
      6. 5.4.6  BOOT Configuration
        1. 5.4.6.1 Boot Pin Selection
      7. 5.4.7  Reset Levels
      8. 5.4.8  Warm Reset
      9. 5.4.9  RESET_IN
      10. 5.4.10 Watchdog Timer (WDT)
      11. 5.4.11 System Voltage Monitoring
        1. 5.4.11.1 Generating a POR
  6. Application and Implementation
    1. 6.1 Application Information
    2. 6.2 Typical Application
      1. 6.2.1 Design Requirements
      2. 6.2.2 Detailed Design Procedure
        1. 6.2.2.1  Recommended External Components
        2. 6.2.2.2  SMPS Input Capacitors
        3. 6.2.2.3  SMPS Output Capacitors
        4. 6.2.2.4  SMPS Inductors
        5. 6.2.2.5  LDO Input Capacitors
        6. 6.2.2.6  LDO Output Capacitors
        7. 6.2.2.7  VCC1
          1. 6.2.2.7.1 Meeting the Power Down Sequence
          2. 6.2.2.7.2 Maintaining Sufficient Input Voltage
        8. 6.2.2.8  VIO_IN
        9. 6.2.2.9  16-MHz Crystal
        10. 6.2.2.10 GPADC
      3. 6.2.3 Application Curves
  7. Power Supply Recommendations
  8. Layout
    1. 8.1 Layout Guidelines
    2. 8.2 Layout Example
  9. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 社区资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 Glossary
  10. 10机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C Interface Timing Requirements

Over operating free-air temperature range(1)(2)(3)(4). For the timing diagram for fast and standard (F/S) modes, see Figure 4-1. For the timing diagram for high-speed (HS) mode, see Figure 4-2.
MIN MAX UNIT
ƒ(SCL) SCL clock frequency Standard mode 100 kHz
Fast mode 400 kHz
High-speed mode (write operation), CB – 100 pF max 3.4 MHz
High-speed mode (read operation), CB – 100 pF max 3.4 MHz
High-speed mode (write operation), CB – 400 pF max 1.7 MHz
High-speed mode (read operation), CB – 400 pF max 1.7 MHz
t(BUF) Bus free time between a STOP and START condition Standard mode 4.7 µs
Fast mode 1.3 µs
th(STA) Hold time (REPEATED) START condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160 ns
t(LOW) Low period of the SCL clock Standard mode 4.7 µs
Fast mode 1.3 µs
High-speed mode, CB – 100 pF maximum 160 ns
High-speed mode, CB – 400 pF maximum 320 ns
t(HIGH) High period of the SCL clock Standard mode 4 µs
Fast mode 600 ns
High-speed mode, CB – 100 pF maximum 60 ns
High-speed mode, CB – 400 pF maximum 120 ns
tsu(STA) Setup time for a REPEATED START condition Standard mode 4.7 µs
Fast mode 600 ns
High-speed mode 160 ns
tsu(DAT) Data setup time Standard mode 250 ns
Fast mode 100 ns
High-speed mode 10 ns
th(DAT) Data hold time Standard mode 0 3.45 µs
Fast mode 0 0.9 µs
High-speed mode, CB – 100 pF maximum 0 70 ns
High-speed mode, CB – 400 pF maximum 0 150 ns
tr(CL) Rise time of the SCL signal Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF maximum 10 40 ns
High-speed mode, CB – 400 pF maximum 20 80 ns
tr(CL1) Rise time of the SCL signal after a REPEATED START condition and after an Acknowledge bit Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF maximum 10 80 ns
High-speed mode, CB – 400 pF maximum 20 160 ns
tf(CL) Fall time of the SCL signal Standard mode 20 + 0.1 CB 300 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF maximum 10 40 ns
High-speed mode, CB – 400 pF maximum 20 80 ns
tr(DA) Rise time of the SDA signal Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF maximum 10 80 ns
High-speed mode, CB – 400 pF maximum 20 160 ns
tf(DA) Fall time of the SDA signal Standard mode 20 + 0.1 CB 300 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF maximum 10 80 ns
High-speed mode, CB – 400 pF maximum 20 160 ns
tsu(STOP) Setup time for a STOP condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160 ns
Specified by design. Not tested in production.
All values referred to VIHmin and VIHmax levels.
For bus line loads CB between 100 and 400 pF, the timing parameters must be linearly interpolated.
A device must internally provide a data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.