ZHCSNX8B December   2020  – September 2023 TPS6593-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
    1.     5
  5. Revision History
  6. 说明(续)
  7. Pin Configuration and Functions
    1. 6.1 Digital Signal Descriptions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)
    6. 7.6  Low Noise Low Drop-Out Regulator (LDO4)
    7. 7.7  Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)
    8. 7.8  BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators
    9. 7.9  Reference Generator (BandGap)
    10. 7.10 Monitoring Functions
    11. 7.11 Clocks, Oscillators, and PLL
    12. 7.12 Thermal Monitoring and Shutdown
    13. 7.13 System Control Thresholds
    14. 7.14 Current Consumption
    15. 7.15 Backup Battery Charger
    16. 7.16 Digital Input Signal Parameters
    17. 7.17 Digital Output Signal Parameters
    18. 7.18 I/O Pullup and Pulldown Resistance
    19. 7.19 I2C Interface
    20. 7.20 Serial Peripheral Interface (SPI)
    21. 7.21 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  System Supply Voltage Monitor
      2. 8.3.2  Power Resources (Bucks and LDOs)
        1. 8.3.2.1 Buck Regulators
          1. 8.3.2.1.1  BUCK Regulator Overview
          2. 8.3.2.1.2  Multi-Phase Operation and Phase-Adding or Shedding
          3. 8.3.2.1.3  Transition Between PWM and PFM Modes
          4. 8.3.2.1.4  Multi-Phase BUCK Regulator Configurations
          5. 8.3.2.1.5  Spread-Spectrum Mode
          6. 8.3.2.1.6  Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support
          7. 8.3.2.1.7  BUCK Output Voltage Setting
          8. 8.3.2.1.8  BUCK Regulator Current Limit
          9. 8.3.2.1.9  SW_Bx Short-to-Ground Detection
          10. 8.3.2.1.10 Sync Clock Functionality
          11.        49
        2. 8.3.2.2 Low Dropout Regulators (LDOs)
          1. 8.3.2.2.1 LDOVINT
          2. 8.3.2.2.2 LDOVRTC
          3. 8.3.2.2.3 LDO1, LDO2, and LDO3
          4. 8.3.2.2.4 Low-Noise LDO (LDO4)
      3. 8.3.3  Output Voltage Monitor and PGOOD Generation
      4. 8.3.4  Thermal Monitoring
        1. 8.3.4.1 Thermal Warning Function
        2. 8.3.4.2 Thermal Shutdown
      5. 8.3.5  Backup Supply Power-Path
      6. 8.3.6  General-Purpose I/Os (GPIO Pins)
      7. 8.3.7  nINT, EN_DRV, and nRSTOUT Pins
      8. 8.3.8  Interrupts
      9. 8.3.9  RTC
        1. 8.3.9.1 General Description
        2. 8.3.9.2 Time Calendar Registers
          1. 8.3.9.2.1 TC Registers Read Access
          2. 8.3.9.2.2 TC Registers Write Access
        3. 8.3.9.3 RTC Alarm
        4. 8.3.9.4 RTC Interrupts
        5. 8.3.9.5 RTC 32-kHz Oscillator Drift Compensation
      10. 8.3.10 Watchdog (WDOG)
        1. 8.3.10.1 Watchdog Fail Counter and Status
        2. 8.3.10.2 Watchdog Start-Up and Configuration
        3. 8.3.10.3 MCU to Watchdog Synchronization
        4. 8.3.10.4 Watchdog Disable Function
        5. 8.3.10.5 Watchdog Sequence
        6. 8.3.10.6 Watchdog Trigger Mode
        7. 8.3.10.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode
        8.       79
        9. 8.3.10.8 Watchdog Question-Answer Mode
          1. 8.3.10.8.1 Watchdog Q&A Related Definitions
          2. 8.3.10.8.2 Question Generation
          3. 8.3.10.8.3 Answer Comparison
            1. 8.3.10.8.3.1 Sequence of the 2-bit Watchdog Answer Counter
            2. 8.3.10.8.3.2 Watchdog Sequence Events and Status Updates
            3. 8.3.10.8.3.3 Watchdog Q&A Sequence Scenarios
      11. 8.3.11 Error Signal Monitor (ESM)
        1. 8.3.11.1 ESM Error-Handling Procedure
          1. 8.3.11.1.1 Level Mode
          2.        90
          3. 8.3.11.1.2 PWM Mode
            1. 8.3.11.1.2.1 Good-Events and Bad-Events
            2. 8.3.11.1.2.2 ESM Error-Counter
            3. 8.3.11.1.2.3 ESM Start-Up in PWM Mode
            4. 8.3.11.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode
            5.         96
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device State Machine
        1. 8.4.1.1 Fixed Device Power FSM
          1. 8.4.1.1.1 Register Resets and NVM Read at INIT State
        2. 8.4.1.2 Pre-Configurable Mission States
          1. 8.4.1.2.1 PFSM Commands
            1. 8.4.1.2.1.1  REG_WRITE_IMM Command
            2. 8.4.1.2.1.2  REG_WRITE_MASK_IMM Command
            3. 8.4.1.2.1.3  REG_WRITE_MASK_PAGE0_IMM Command
            4. 8.4.1.2.1.4  REG_WRITE_BIT_PAGE0_IMM Command
            5. 8.4.1.2.1.5  REG_WRITE_WIN_PAGE0_IMM Command
            6. 8.4.1.2.1.6  REG_WRITE_VOUT_IMM Command
            7. 8.4.1.2.1.7  REG_WRITE_VCTRL_IMM Command
            8. 8.4.1.2.1.8  REG_WRITE_MASK_SREG Command
            9. 8.4.1.2.1.9  SREG_READ_REG Command
            10. 8.4.1.2.1.10 SREG_WRITE_IMM Command
            11. 8.4.1.2.1.11 WAIT Command
            12. 8.4.1.2.1.12 DELAY_IMM Command
            13. 8.4.1.2.1.13 DELAY_SREG Command
            14. 8.4.1.2.1.14 TRIG_SET Command
            15. 8.4.1.2.1.15 TRIG_MASK Command
            16. 8.4.1.2.1.16 END Command
          2. 8.4.1.2.2 Configuration Memory Organization and Sequence Execution
          3. 8.4.1.2.3 Mission State Configuration
          4. 8.4.1.2.4 Pre-Configured Hardware Transitions
            1. 8.4.1.2.4.1 ON Requests
            2. 8.4.1.2.4.2 OFF Requests
            3. 8.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions
            4. 8.4.1.2.4.4 WKUP1 and WKUP2 Functions
            5. 8.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY
        3. 8.4.1.3 Error Handling Operations
          1. 8.4.1.3.1 Power Rail Output Error
          2. 8.4.1.3.2 Catastrophic Error
          3. 8.4.1.3.3 Watchdog (WDOG) Error
          4. 8.4.1.3.4 Warnings
        4. 8.4.1.4 Device Start-up Timing
        5. 8.4.1.5 Power Sequences
        6. 8.4.1.6 First Supply Detection
        7. 8.4.1.7 Register Power Domains and Reset Levels
      2. 8.4.2 Multi-PMIC Synchronization
        1. 8.4.2.1 SPMI Interface System Setup
        2. 8.4.2.2 Transmission Protocol and CRC
          1. 8.4.2.2.1 Operation with Transmission Errors
          2. 8.4.2.2.2 Transmitted Information
        3. 8.4.2.3 SPMI Target Device Communication to SPMI Controller Device
          1. 8.4.2.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device
        4. 8.4.2.4 SPMI-BIST Overview
          1. 8.4.2.4.1 SPMI Bus during Boot BIST and RUNTIME BIST
          2. 8.4.2.4.2 Periodic Checking of the SPMI
          3. 8.4.2.4.3 SPMI Message Priorities
    5. 8.5 Control Interfaces
      1. 8.5.1 CRC Calculation for I2C and SPI Interface Protocols
      2. 8.5.2 I2C-Compatible Interface
        1. 8.5.2.1 数据有效性
        2. 8.5.2.2 启动和停止条件
        3. 8.5.2.3 Transferring Data
        4. 8.5.2.4 Auto-Increment Feature
      3. 8.5.3 Serial Peripheral Interface (SPI)
    6. 8.6 Configurable Registers
      1. 8.6.1 Register Page Partitioning
      2. 8.6.2 CRC Protection for Configuration, Control, and Test Registers
      3. 8.6.3 CRC Protection for User Registers
      4. 8.6.4 Register Write Protection
        1. 8.6.4.1 Watchdog and ESM Configuration Registers
        2. 8.6.4.2 User Registers
    7. 8.7 Register Maps
      1. 8.7.1 TPS6593-Q1 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Powering a Processor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 VCCA
          2. 9.2.1.2.2 Internal LDOs
          3. 9.2.1.2.3 Crystal Oscillator
          4. 9.2.1.2.4 Buck Input Capacitors
          5. 9.2.1.2.5 Buck Output Capacitors
          6. 9.2.1.2.6 Buck Inductors
          7. 9.2.1.2.7 LDO Input Capacitors
          8. 9.2.1.2.8 LDO Output Capacitors
          9. 9.2.1.2.9 Digital Signal Connections
      2. 9.2.2 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 Device Nomenclature
    3. 10.3 Documentation Support
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 支持资源
    6. 10.6 Trademarks
    7. 10.7 静电放电警告
    8. 10.8 术语表
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Pre-Configurable Mission States

When the device arrives at a mission state, all rail sequencing is controlled by the pre-configurable FSM engine (PFSM) through the configuration memory. The configuration memory allows configurations of the triggers and the operation states that together form the configurable sub state machine within the scope of mission states. This sub state machine can be used to control and sequence the different voltage outputs as well as any GPIO outputs that can be used as enable for external rails. When the device is in a mission state, it has the capacity to supply the processor and other platform modules depending on the power rail configuration. The definitions and transition triggers of the mission states are configurable through the NVM configuration. Unlike the user registers, the PFSM definition stored in the NVM cannot be modified during normal operation. When the PMIC determines that a transition to another operation state is necessary, it reads the configuration memory to determine what sequencing is needed for the state transition. Furthermore, the PFSM has four storage registers, further referred to as PFSM storage registers (R0-3).

Table 8-15 shows how the trigger signals for each state transition can come from a variety of interface or GPIO inputs, or potential error sources. Figure 8-37 shows how the device processes all of the possible error sources inside the PFSM engine, a hierarchical mask system is applied to filter out the common errors that can be handled by interrupt only, and categorize the other error sources as Severe Global Error, Moderate Global Error, and so forth. The filtered and categorized triggers are sent into the PFSM engine, that then determines the entry and exit condition for each configured mission state.

GUID-20201009-CA0I-ZV3W-MWQ4-R0B1RPMDC1HJ-low.svg Figure 8-37 Error Source Hierarchical Mask System

Figure 8-39 shows an example of how the PFSM engine utilizes instructions to execute the configured device state and sequence transitions of the mission state-machine. Table 8-12 provides the instruction set and usage description of each instruction in the following sections. Section 8.4.1.2.2 describes how the instructions are stored in the NVM memory.

Table 8-12 PFSM Instruction set
Command Opcode Command Command Description
"0000" REG_WRITE_MASK_PAGE0_IMM Write the specified data, except the masked bits, to the specified page 0 register address.
"0001" REG_WRITE_IMM Write the specified data to the specified register address.
"0010" REG_WRITE_MASK_IMM Write the specified data, except the masked bits, to the specified register address.
"0011" REG_WRITE_VOUT_IMM Write the target voltage of a specified regulator after a specified delay.
"0100" REG_WRITE_VCTRL_IMM Write the operation mode of a specified regulator after a specified delay.
"0101" REG_WRITE_MASK_SREG Write the data from PFSM storage register (R0-3), except the masked bits, to the specified register address.
"0110" SREG_READ_REG Write PFSM storage register (R0-3) with data from a specified address.
"0111" WAIT Execution is paused until the specified type of the condition is met or timed out.
"1000" DELAY_IMM Delay the execution by a specified time.
"1001" DELAY_SREG Delay the execution by a time value stored in the specified PFSM storage register (R0-3).
"1010" TRIG_SET Set a trigger destination address for a given input signal or condition.
"1011" TRIG_MASK Sets a trigger mask that determines which triggers are active.
"1100" END Mark the final instruction in a sequential task.
"1101" REG_WRITE_BIT_PAGE0_IMM Write the specified data to the BIT_SEL location of the specified page 0 register address.
"1110" REG_WRITE_WIN_PAGE0_IMM Write the specified data to the SHIFT location of the specified page 0 register address.
"1111" SREG_WRITE_IMM Write the specified data to the PFSM storage register (R0-3).