SLVS208J May   1999  – August 2015 TPS767

PRODUCTION DATA.  

  1. Features
  2. Description
  3. Revision History
  4. Description (Continued)
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 FB—Pin Connection (adjustable version only)
      2. 9.3.2 Reset Indicator
      3. 9.3.3 Regulator Protection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Minimum Load Requirements
    5. 9.5 Programming
      1. 9.5.1 Programming the TPS76701 Adjustable LDO Regulator
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 External Capacitor Requirements
    2. 10.2 Typical Application
  11. 11Layout
    1. 11.1 Power Dissipation and Junction Temperature
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|8
  • PWP|20
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VI Input voltage range(2) –0.3 13.5 V
Voltage range at EN –0.3 VI + 0.3 V
Maximum RESET voltage 16.5
Peak output current Internally limited
VO Output voltage (OUT, FB) 7 V
Continuous total power dissipation See Thermal Information
TJ Operating junction temperature range –40 125 °C
Tstg Storage temperature range −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network terminal ground.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VI(1) Input voltage 2.7 10 V
VO Output voltage range 1.2 5.5 V
IO(2) Output current 0 1.0 A
TJ(2) Operating junction temperature –40 125 °C
(1) Maximum VIN = VOUT + VDO or 2.7V, whichever is greater.
(2) Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

7.4 Thermal Information

THERMAL METRIC(1) TPS767xxQ UNIT
PWP (HTSSOP) D (SOIC)
(20 PINS) (8 PINS)
RθJA Junction-to-ambient thermal resistance 35.8 106.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 26.1 52.5 °C/W
RθJB Junction-to-board thermal resistance 8.7 47.7 °C/W
ψJT Junction-to-top characterization parameter 0.4 9.0 °C/W
ψJB Junction-to-board characterization parameter 8.6 47.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.6 n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VI = VO(typ) + 1 V, IO = 1 mA, EN = 0 V, Co = 10 µF (over recommended operating free-air temperature range, unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Output voltage
(10 µA to 1 A load)
TPS76701 1.5 V ≤ VO ≤ 5.5 V, TJ = 25°C VO V
1.5 V ≤ VO ≤ 5.5 V, TJ = −40°C to 125°C 0.98VO 1.02VO
TPS76715 TJ = 25°C, 2.7 V < VIN < 10 V 1.5 V
TJ = −40°C to 125°C, 2.7 V < VIN < 10 V 1.470 1.530
TPS76718 TJ = 25°C, 2.8 V < VIN < 10 V 1.8 V
TJ = −40°C to 125°C, 2.8 V < VIN < 10 V 1.7646 1.836
TPS76725 TJ = 25°C, 3.5 V < VIN < 10 V 2.5 V
TJ = −40°C to 125°C, 3.5 V < VIN < 10 V 2.450 2.550
TPS76727 TJ = 25°C, 3.7 V < VIN < 10 V 2.7 V
TJ = −40°C to 125°C, 3.7 V < VIN < 10 V 2.646 2.754
TPS76728 TJ = 25°C, 3.8 V < VIN < 10 V 2.8 V
TJ = −40°C to 125°C, 3.8 V < VIN < 10 V 2.7446 2.856
TPS76730 TJ = 25°C, 4.0 V < VIN < 10 V 3 V
TJ = −40°C to 125°C, 4.0 V < VIN < 10 V 2.9400 3.060
TPS76733 TJ = 25°C, 4.3 V < VIN < 10 V 3.3
TJ = −40°C to 125°C, 4.3 V < VIN < 10 V 3.2346 3.366
TPS76750 TJ = 25°C, 6.0 V < VIN < 10 V 5
TJ = −40°C to 125°C, 6.0 V < VIN < 10 V 4.900 5.100
Quiescent current (GND current) EN = 0V 10 µA < IO < 1 A, TJ = 25°C 85 µA
IO = 1 A, TJ = −40°C to 125°C 125
Output voltage line regulation (∆VO/VO) VO + 1 V < VI ≤ 10 V, TJ = 25°C 0.01 %/V
Load regulation 3 mV
Output noise voltage TPS76718 BW = 200 Hz to 100 kHz,
Co = 10 µF,
IC = 1 A,
TJ = 25°C
55 µVrms
Output current limit VO = 0 V 1.2 1.7 2 A
Thermal shutdown junction temperature 150 °C
Standby current EN = VI, TJ = 25°C, 2.7 V < VI < 10 V 1 µA
EN = VI,
TJ = −40°C to 125°C,
2.7 V < VI < 10 V
10 µA
FB input current TPS76701 FB = 1.5 V 2 nA
High level enable input voltage 1.7 V
Low level enable input voltage 0.9 V
Power supply ripple rejection f = 1 kHz, Co = 10 µF, TJ = 25°C 60 dB
Reset Minimum input voltage for valid RESET IO(RESET) = 300 μA 1.1
Trip threshold voltage VO decreasing 92 98
Hysteresis voltage Measured at VO 0.5
Output low voltage VI = 2.7 V, IO(RESET) = 1 mA 0.15 0.4
Leakage current V(RESET) = 5 V 1
RESET time-out delay 200
Input current (EN) EN = 0 V –1 0 1 µA
EN = VI –1 1
Dropout voltage (1) TPS76728 IO = 1 A TJ = 25°C 500 mV
TJ = −40°C to 125°C 825
TPS76730 IO = 1 A TJ = 25°C 450 mV
TJ = −40°C to 125°C 675
TPS76733 IO = 1 A TJ = 25°C 350 mV
TJ = −40°C to 125°C 575
TPS76750 IO = 1 A TJ = 25°C 230 mV
TJ = −40°C to 125°C 380
(1) IN voltage equals VO(typ) − 100 mV; TPS76701 output voltage set to 3.3 V nominal with external resistor divider. TPS76715, TPS76718, TPS76725, and TPS76727 dropout voltage limited by input voltage range limitations (i.e., TPS76730 input voltage needs to drop to 2.9 V for purpose of this test).
TPS767 td_slvs208.gifFigure 1. Timing Diagram

7.6 Typical Characteristics

Table 1. Table of Graphs

FIGURE
VO Output voltage vs Output current Figure 2, Figure 3, Figure 4
vs Free-air temperature Figure 5, Figure 6, Figure 7
Ground current vs Free-air temperature Figure 8, Figure 9
Power supply ripple rejection vs Frequency Figure 10
Output spectral noise density vs Frequency Figure 11
Input voltage (min) vs Output voltage Figure 12
Zo Output impedance vs Frequency Figure 13
VDO Dropout voltage vs Free-air temperature Figure 14
Line transient response Figure 15, Figure 16
Load transient response Figure 17, Figure 18
VO Output voltage vs Time Figure 19
Dropout voltage vs Input voltage Figure 20
Equivalent series resistance (ESR)(1) vs Output current Figure 21Figure 24
(1) Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to Co.
TPS767 tc_1_ov_v_oc_slvs208.gif
VI = 4.3 V TA = 25°C
Figure 2. TPS76733 Output Voltage vs Output Current
TPS767 tc_2_ov_v_oc_slvs208.gif
VI = 2.7 V TA = 25°C
Figure 3. TPS76715 Output Voltage vs Output Current
TPS767 tc_3_ov_v_oc_slvs208.gif
VI = 3.5 V TA = 25°C
Figure 4. TPS76725 Output Voltage vs Output Current
TPS767 tc_5_ov_v_fat_slvs208.gif
VI = 2.7 V
Figure 6. TPS76715 Output Voltage vs Free-Air Temperature
TPS767 tc_7_gc_v_fat_slvs208.gif
VI = 4.3 V
Figure 8. TPS76733 Ground Current vs Free-Air Temperature
TPS767 tc_9_psrr_v_f_slvs208.gif
VI = 4.3 V Co = 10 µF
IO = 1 A TA = 25°C
Figure 10. TPS76733 Power Supply Ripple Rejection vs Frequency
TPS767 tc_11_iv_v_ov_slvs208.gif
IO = 1 A
Figure 12. Input Voltage (MIN) vs Output Voltage
TPS767 tc_13_dv_v_fat_slvs208.gif
CO = 10 µF
Figure 14. TPS76733 Dropout Voltage vs Free-Air Temperature
TPS767 tc_15_load_tran_res_slvs208.gif
CO = 10 µF TA = 25°C
Figure 16. TPS76715 Load Transient Response
TPS767 tc_17_load_tran_res_slvs208.gif
CO = 10 µF TA = 25°C
Figure 18. TPS76733 Load Transient Response
TPS767 tc_19_dv_v_iv_slvs208.gif
IO = 1 A
Figure 20. TPS76701 Dropout Voltage vs Input Voltage
TPS767 tc_21_trs_esr_v_oc_slvs208.gif
VO = 3.3 V Co = 4.7 µF
VI = 4.3 A TA = 125°C
Figure 22. Typical Region of Stability
Equivalent Series Resistance vs Output Current
TPS767 tc_23_trs_esr_v_oc_slvs208.gif
VO = 3.3 V Co = 22 µF
VI = 4.3 A TA = 125°C
Figure 24. Typical Region of Stability
Equivalent Series Resistance vs Output Current
TPS767 tc_4_ov_v_fat_slvs208.gif
VI = 4.3 V
Figure 5. TPS76733 Output Voltage vs Free-Air Temperature
TPS767 tc_6_ov_v_fat_slvs208.gif
VI = 3.5 V
Figure 7. TPS767125 Output Voltage vs Free-Air Temperature
TPS767 tc_8_gc_v_fat_slvs208.gif
VI = 2.7 V
Figure 9. TPS76715 Ground Current vs Free-Air Temperature
TPS767 tc_10_osnd_v_f_slvs208.gif
VI = 4.3 V Co = 10 µF TA = 25°C
Figure 11. TPS76733 Output Spectral Noise Density vs Frequency
TPS767 tc_12_oi_v_f_slvs208.gif
VI = 4.3 V Co = 10 µF TA = 25°C
Figure 13. TPS76733 Output Impedance vs Frequency
TPS767 tc_14_line_tran_res_slvs208.gif
CO = 10 µF TA = 25°C
Figure 15. TPS76715 Line Transient Response
TPS767 tc_16_line_tran_res_slvs208.gif
CO = 10 µF TA = 25°C
Figure 17. TPS76733 Line Transient Response
TPS767 tc_18_ov_v_tas_slvs208.gif
CO = 10 µF IO = 1 A TA = 25°C
Figure 19. TJPS7633 Output Voltage vs Time (At Startup)
TPS767 tc_20_trs_esr_v_oc_slvs208.gif
VO = 3.3 V Co = 4.7 µF
VI = 4.3 A TA = 25°C
Figure 21. Typical Region of Stability
Equivalent Series Resistance vs Output Current
TPS767 tc_22_trs_esr_v_oc_slvs208.gif
VO = 3.3 V Co = 22 µF
VI = 4.3 A TA = 25°C
Figure 23. Typical Region of Stability
Equivalent Series Resistance vs Output Current