SGLS155B February   2003  – November 2016 TPS768-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 Device Operation
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Power-Good Indicator
      2. 8.3.2 Regulator Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown
      2. 8.4.2 Operation With VIN Less Than 2.7 V
      3. 8.4.3 Operation With VIN Greater Than 2.7 V
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Minimum Load Requirements
        2. 9.2.2.2 FB Pin Connection (Adjustable Version Only)
        3. 9.2.2.3 Programming the TPS76801-Q1 Adjustable LDO Regulator
        4. 9.2.2.4 External Capacitor Requirements
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Power Dissipation and Junction Temperature
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings(1)

over operating ambient temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage, VI (2) –0.3 13.5 V
Voltage at EN –0.3 VI + 0.3 V
Maximum PG voltage 16.5 V
Peak output current Internally limited
Output voltage, VO (OUT, FB) 7 V
Operating junction temperature, TJ –40 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network terminal ground.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins ±500
Corner pins (1, 4, 5, and 8) ±750
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

MIN MAX UNIT
VI Input voltage(1) 2.7 10 V
VO Voltage at OUT 1.2 5.5 V
IO Output current(2) 0 1 A
TA Operating ambient temperature(2) –40 125 °C
To calculate the minimum input voltage for the maximum output current, use the following equation: VI(min) = VO(max) + V(DO,max_load), where V(DO,max_load) is the dropout voltage at maximum load.
Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

Thermal Information

THERMAL METRIC(1) TPS768xx-Q1 UNIT
PWP (HTSSOP)
20 PINS
RθJA Junction-to-ambient thermal resistance 39.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 25.8 °C/W
RθJB Junction-to-board thermal resistance 22.1 °C/W
ψJT Junction-to-top characterization parameter 0.8 °C/W
ψJB Junction-to-board characterization parameter 21.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.7 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Electrical Characteristics

over recommended operating ambient temperature range, VI = VO(typ) + 1 V, IO = 1 mA, EN = 0 V, CO = 10 μF (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Output voltage
(10-μA to 1-A load)(1)
TPS76801-Q1 5.5 V ≥ VO ≥ 1.5 V TJ = 25°C VO V
TJ = –40°C to 125°C 0.98 × VO 1.02 × VO
TPS76818-Q1 2.8 V < VIN < 10 V TJ = 25°C 1.8
TJ = –40°C to 125°C 1.764 1.836
TPS76825-Q1 3.5 V < VIN < 10 V TJ = 25°C 2.5
TJ = –40°C to 125°C 2.45 2.55
TPS76833-Q1 4.3 V < VIN < 10 V TJ = 25°C 3.3
TJ = –40°C to 125°C 3.234 3.366
TPS76850-Q1 6 V < VIN < 10 V TJ = 25°C 5
TJ = –40°C to 125°C 4.9 5.1
Quiescent current (GND current), EN = 0 V(1) TJ = 25°C 10 μA < IO < 1 A, TJ = 25°C 85 μA
TJ = –40°C to 125°C IO = 1 A, TJ = –40°C to 125°C 125
Output voltage line regulation (ΔVO / VO) (1) (2) TJ = 25°C VO + 1 V < VI ≤ 10 V, TJ = 25°C 0.01 %/V
Load regulation 3 mV
Output noise voltage TPS76818-Q1 TJ = 25°C BW = 200 Hz to 100 kHz, CO = 10 μF, IC = 1 A, TJ = 25°C 55 μVrms
Output current limit VO = 0 V 1.7 2 A
Thermal shutdown junction temperature 150 °C
Standby current EN = VI,
2.7 V < VI < 10 V
TJ = 25°C 1 μA
TJ = –40°C to 125°C 10
FB input current TPS76801-Q1 VFB = 1.5 V 2 nA
High-level enable input voltage 1.7 V
Low-level enable input voltage 0.9 V
Power-supply ripple rejection (1) TJ = 25°C f = 1 kHz, CO = 10 μF, TJ = 25°C 60 dB
PG Minimum input voltage for valid PG IO(PG) = 300 μA 1.1 V
Trip threshold voltage VO decreasing 92 98 %VO
Hysteresis voltage Measured at VO 0.5 %VO
Output low voltage VI = 2.7 V, IO(PG) = 1 mA 0.15 0.4 V
Leakage current V(PG) = 5 V 1 μA
EN input current EN = 0 V –1 0 1 μA
EN = VI –1 1
Dropout voltage (3) TPS76833-Q1 IO = 1 A TJ = 25°C 350 mV
TJ = –40°C to 125°C 575
TPS76850-Q1 TJ = 25°C 230
TJ = –40°C to 125°C 380
Minimum IN operating voltage is 2.7 V or VO(typ) + 1 V, whichever is greater. Maximum IN voltage 10 V.
If VO ≤ 1.8 V then VI(max) = 10 V, VI(min) = 2.7 V: TPS768-Q1 q_27v_line_lvs211.gif
If VO ≥ 2.5 V then VI(max) = 10 V, VI(min) = VO + 1 V: TPS768-Q1 q_1v_line_lvs211.gif
IN voltage equals VO(typ) – 100 mV.

Typical Characteristics

TPS768-Q1 VO43_v_IO_SGLS155.gif Figure 1. TPS76833-Q1 Output Voltage vs Output Current
TPS768-Q1 VO43V_v_TA_SGLS155.gif Figure 3. TPS76833-Q1 Output Voltage vs Ambient Temperature
TPS768-Q1 GC43_v_TA_SGLS155.gif Figure 5. TPS76833-Q1 Ground Current vs Ambient Temperature
TPS768-Q1 OSND_v_f_SGLS155.gif Figure 7. TPS76833-Q1 Output Spectral Noise Density vs Frequency
TPS768-Q1 Zo_v_f_SGLS155.gif Figure 9. TPS76833-Q1 Output Impedance vs Frequency
TPS768-Q1 Line_833_TR_SGLS155.gif Figure 11. TPS76833-Q1 Line Transient Response
TPS768-Q1 VO_v_Time_SGLS155.gif Figure 13. TPS76833-Q1 Output Voltage vs Time (at Start-Up)
TPS768-Q1 ESR1_v_IO_SGLS155.gif Figure 15. Typical Region of Stability Equivalent Series Resistance Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C vs Output Current
Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to CO.
TPS768-Q1 ESR3_v_IO_SGLS155.gif Figure 17. Typical Region of Stability Equivalent Series Resistance(1) vs Output Current
TPS768-Q1 VO35_v_IO_SGLS155.gif Figure 2. TPS76825-Q1 Output Voltage vs Output Current
TPS768-Q1 VO35V_v_TA_SGLS155.gif Figure 4. TPS76825-Q1 Output Voltage vs Ambient Temperature
TPS768-Q1 PSRR_v_f_SGLS155.gif Figure 6. TPS76833-Q1 Power-Supply Ripple Rejection vs Frequency
TPS768-Q1 VI_v_VO_SGLS155.gif Figure 8. Input Voltage (Min.) vs Output Voltage
TPS768-Q1 VDO_v_TA_SGLS155.gif Figure 10. TPS76833-Q1 Dropout Voltage vs Ambient Temperature
TPS768-Q1 Load_833_TR_SGLS155.gif Figure 12. TPS76833-Q1 Load Transient Response
TPS768-Q1 VDO_v_VI_SGLS155.gif Figure 14. TPS76801-Q1 Dropout Voltage vs Input Voltage
TPS768-Q1 ESR2_v_IO_SGLS155.gif Figure 16. Typical Region of Stability Equivalent Series Resistance(1) vs Output Current
TPS768-Q1 ESR4_v_IO_SGLS155.gif Figure 18. Typical Region of Stability Equivalent Series Resistance(1) vs Output Current