SLVS389M September   2002  – September 2015 TPS786

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Regulator Protection
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Programming the TPS78601 Adjustable LDO Regulator
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Capacitor Requirements
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Regulator Mounting
    4. 10.4 Power Dissipation
      1. 10.4.1 Estimating Junction Temperature
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Modules
        2. 11.1.1.2 Spice Models
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN –0.3 6 V
VEN –0.3 VIN + 0.3 V
VOUT 6 V
Peak output current Internally limited
Continuous total power dissipation See Thermal Information
Junction temperature, TJ –40 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input supply voltage 2.7 5.5 V
IOUT Output current 0 1.5 A
TJ Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1)(2) TPS786(3) UNIT
DRB (SON) DCQ (S0T-223) KTT (TO-263)
8 PINS 6 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance 41.1 54.2 40.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 49.1 33.3 43.1 °C/W
RθJB Junction-to-board thermal resistance 16.6 8.9 21.5 °C/W
ψJT Junction-to-top characterization parameter 0.7 2.6 9.4 °C/W
ψJB Junction-to-board characterization parameter 16.8 8.8 20 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 5.2 N/A 2.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.
(3) Thermal data for the DRB, DCQ, and DRV packages are derived by thermal simulations based on JEDEC-standard methodology as specified in the JESD51 series. The following assumptions are used in the simulations:
  1. i. DRB: The exposed pad is connected to the PCB ground layer through a 2×2 thermal via array.        
    . ii. DCQ: The exposed pad is connected to the PCB ground layer through a 3×2 thermal via array.        
    . iii. KTT: The exposed pad is connected to the PCB ground layer through a 5×4 thermal via array.      
  2. i. DRB: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.    
    . ii. DCQ: Each of top and bottom copper layers has a dedicated pattern for 20% copper coverage.        
    . iii. KTT: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.
  3. These data were generated with only a single device at the center of a JEDEC high-K (2s2p) board with 3 inches × 3 inches copper area. To understand the effects of the copper area on thermal performance, see the Power Dissipation and Estimating Junction Temperature sections of this data sheet.

6.5 Electrical Characteristics

Over recommended operating temperature range (TJ = –40°C to 125°C), VEN = VIN, VIN = VOUT(nom) + 1 V(1), IOUT = 1 mA,
COUT = 10 μF, and CNR = 0.01 μF, unless otherwise noted. Typical values are at 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input voltage, VIN(1) 2.7 5.5 V
Internal reference, VFB (TPS78601) 1.200 1.225 1.250 V
Continuous output current IOUT 0 1.5 A
Output
voltage
Output voltage range TPS78601 1.225 5.5 – VDO V
Accuracy TPS78601(2) 0 μA ≤ IOUT ≤ 1.5 A, VOUT + 1 V ≤ VIN ≤ 5.5 V(1) (0.98)VOUT VOUT (1.02)VOUT V
Fixed VOUT < 5 V 0 μA ≤ IOUT ≤ 1.5 A, VOUT + 1 V ≤ VIN ≤ 5.5 V(1) –2% 2%
Fixed VOUT = 5 V 0 μA ≤ IOUT ≤ 1.5 A, VOUT + 1 V ≤ VIN ≤ 5.5 V(1) –3% 3%
Output voltage line regulation (ΔVOUT%/VIN)(1) VOUT + 1 V ≤ VIN ≤ 5.5 V 5 12 %/V
Load regulation (ΔVOUT%/VOUT) 0 μA ≤ IOUT ≤ 1.5 A 7 mV
Dropout voltage(3)
VIN = VOUT(nom) – 0.1 V
TPS78628 IOUT = 1.5 A 410 580 mV
TPS78630 IOUT = 1.5 A 390 550
TPS78633 IOUT = 1.5 A 340 510
TPS78650 IOUT = 1.5 A 310 470
Output current limit VOUT = 0 V 2.4 4.2 A
Ground pin current 0 μA ≤ IOUT ≤ 1.5 A 260 385 μA
Shutdown current(4) VEN = 0 V, 2.7 V ≤ VIN ≤ 5.5 V 0.07 1 μA
FB pin current VFB = 1.225 V 1 μA
Power-supply ripple rejection TPS78630 f = 100 Hz, IOUT = 10 mA 59 dB
f = 100 Hz, IOUT = 1.5 A 52
f = 10 kHz, IOUT = 1.5 A 49
f = 100 kHz, IOUT = 1.5 A 32
Output noise voltage (TPS78630) BW = 100 Hz to 100 kHz,
IOUT = 1.5 A
CNR = 0.001 μF 66 μVRMS
CNR = 0.0047 μF 51
CNR = 0.01 μF 49
CNR = 0.1 μF 48
Time, start-up (TPS78630) RL = 2 Ω, COUT = 1 μF CNR = 0.001 μF 50 μs
CNR = 0.0047 μF 75
CNR = 0.01 μF 110
High-level enable input voltage 2.7 V ≤ VIN ≤ 5.5 V 1.7 VIN V
Low-level enable input voltage 2.7 V ≤ VIN ≤ 5.5 V 0 0.7 V
EN pin current VEN = 0 –1 1 μA
UVLO threshold VCC rising 2.25 2.65 V
UVLO hysteresis 100 mV
(1) Minimum VIN = VOUT + VDO or 2.7 V, whichever is greater. The TPS78650 is tested at VIN = 5.5 V.
(2) Tolerance of external resistors not included in this specification.
(3) Dropout is not measured for TPS78618 or TPS78625 because minimum VIN = 2.7 V.
(4) For adjustable version, this applies only after VIN is applied; then VEN transitions high to low.

6.6 Typical Characteristics

TPS786 tc_vo_io_630-lvs389.gif
Figure 1. TPS78630 Output Voltage vs Output Current
TPS786 tc_gc_tj_628-lvs389.gif
Figure 3. TPS78628 Ground Current vs Junction Temperature
TPS786 tc_osnd_f_2-lvs389.gif
Figure 5. TPS78630 Output Spectral Noise Density vs Frequency
TPS786 tc_rms_cbyp-lvs389.gif
Figure 7. TPS78630 Root Mean Squared Output Noise vs Bypass Capacitance
TPS786 tc_rr_f_1-lvs389.gif
Figure 9. TPS78630 Ripple Rejection vs Frequency
TPS786 tc_rr_f_3-lvs389.gif
Figure 11. TPS78630 Ripple Rejection vs Frequency
TPS786 tc_ltr_t_618-lvs389.gif
Figure 13. TPS78618 Line Transient Response
TPS786 tc_ltr_t_628-lvs389.gif
Figure 15. TPS78628 Load Transient Response
TPS786 tc_dc_io_630-lvs389.gif
Figure 17. TPS78630 Dropout Voltage vs Output Current
TPS786 tc_min_vin-vout_lvs389.gif
Figure 19. Minimum Required Input Voltage vs Output Voltage
TPS786 tc_esr_io_22-lvs329.gif
Figure 21. TPS78630 Typical Regions of Stability Equivalent Series Resistance (ESR) vs Output Current
TPS786 tc_v_startup-lvs389.gif
Figure 23. Start-Up
TPS786 tc_vo_tj_628-lvs389.gif
Figure 2. TPS78628 Output Voltage vs Junction Temperature
TPS786 tc_osnd_f_1-lvs389.gif
Figure 4. TPS78630 Output Spectral Noise Density vs Frequency
TPS786 tc_osnd_f_3-lvs389.gif
Figure 6. TPS78630 Output Spectral Noise Density vs Frequency
TPS786 tc_vdo_tj-lvs389.gif
Figure 8. TPS78628 Dropout Voltage vs Junction Temperature
TPS786 tc_rr_f_2-lvs389.gif
Figure 10. TPS78630 Ripple Rejection vs Frequency
TPS786 tc_rr_f_4-lvs389.gif
Figure 12. TPS78630 Ripple Rejection vs Frequency
TPS786 tc_ltr_t_630-lvs389.gif
Figure 14. TPS78630 Line Transient Response
TPS786 tc_pupd_200-lvs389.gif
Figure 16. TPS78625 Power Up and Power Down
TPS786 tc_dv_vi_601-lvs389.gif
Figure 18. TPS78601 Dropout Voltage vs Input Voltage
TPS786 tc_esr_io_1-lvs389.gif
Figure 20. TPS78630 Typical Regions of Stability Equivalent Series Resistance (ESR) vs Output Current
TPS786 tc_esr_io_21-lvs329.gif
Figure 22. TPS78630 Typical Regions of Stability Equivalent Series Resistance (ESR) vs Output Current