ZHCSQT5 July   2022 TPS7A57

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Voltage Setting and Regulation
      2. 7.3.2 Low-Noise, Ultra-High Power-Supply Rejection Ratio (PSRR)
      3. 7.3.3 Programmable Soft-Start (NR/SS Pin)
      4. 7.3.4 Precision Enable and UVLO
      5. 7.3.5 Charge Pump Enable and BIAS Rail
      6. 7.3.6 Power-Good Pin (PG Pin)
      7. 7.3.7 Active Discharge
      8. 7.3.8 Thermal Shutdown Protection (TSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation
      2. 7.4.2 Dropout Operation
      3. 7.4.3 Disabled
      4. 7.4.4 Current-Limit Operation
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Precision Enable (External UVLO)
      2. 8.1.2  Undervoltage Lockout (UVLO) Operation
        1. 8.1.2.1 IN Pin UVLO
        2. 8.1.2.2 BIAS UVLO
        3. 8.1.2.3 Typical UVLO Operation
        4. 8.1.2.4 UVLO(IN) and UVLO(BIAS) Interaction
      3. 8.1.3  Dropout Voltage (VDO)
      4. 8.1.4  Input and Output Capacitor Requirements (CIN and COUT)
      5. 8.1.5  Recommended Capacitor Types
      6. 8.1.6  Soft-Start, Noise Reduction (NR/SS Pin), and Power-Good (PG Pin)
      7. 8.1.7  Optimizing Noise and PSRR
      8. 8.1.8  Adjustable Operation
      9. 8.1.9  Load Transient Response
      10. 8.1.10 Current Limit and Foldback Behavior
      11. 8.1.11 Charge Pump Operation
      12. 8.1.12 Sequencing
      13. 8.1.13 Power-Good Functionality
      14. 8.1.14 Output Impedance
      15. 8.1.15 Paralleling for Higher Output Current and Lower Noise
      16. 8.1.16 Current Mode Margining
      17. 8.1.17 Voltage Mode Margining
      18. 8.1.18 Power Dissipation (PD)
      19. 8.1.19 Estimating Junction Temperature
      20. 8.1.20 TPS7A57EVM-081 Thermal Analysis
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 商标
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 术语表
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Mechanical Data

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power-Good Functionality

As described in the Section 7.2, the PG pin is a open-drain MOSFET driven by a Schmitt trigger. The Schmitt trigger compares the SNS pin voltage to a preselected voltage equal to 90% that of the reference voltage.

As mentioned in the Section 6.3 table, the pullup resistance must be between 10 kΩ and 100 kΩ for optimal performance. If the PG functionality is not desired, the PG pin can either be left floating or connected to GND.

There are two UVLO circuits present on the BIAS rail, one referenced to GND (VUVLO(BIAS)) and one referenced to VREF (VUVLO(BIAS) – VREF). A false PG event can occur as a result of logic priorities when the charge pump is disabled.

To eliminate any false PG events, consider setting VBIAS 3.2 V above VOUT.

Table 8-5 describes the various UVLO behaviors.

Table 8-5 UVLO Triggered PG Events
VIN VUVLO(BIAS) RISING VUVLO(BIAS) FALLING VUVLO(BIAS) – VREF RISING VUVLO(BIAS) – VREF FALLING
0.5 V 2.8 V 2.685 V 2.1 + 0.5 = 2.6 V 1.86 + 0.5 = 2.36 V
0.7 V 2.8 V 2.685 V 2.1 + 0.7 = 2.8 V 1.86 + 0.7 = 2.56 V
1.4 V 2.8 V 2.685 V 2.1 + 1.4 = 3.5 V 1.86 + 1.4 = 3.26 V
5.2 V 2.8 V 2.685 V 2.1 + 5.2 = 7.3 V 1.86 + 5.2 = 7.06 V