ZHCSH45B June   2017  – October 2021 TPS7A83A

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: General
    6. 7.6 Electrical Characteristics: TPS7A8300A
    7. 7.7 Electrical Characteristics: TPS7A8301A
    8. 7.8 Typical Characteristics: TPS7A8300A
    9. 7.9 Typical Characteristics: TPS7A8301A
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Voltage Regulation Features
        1. 8.3.1.1 DC Regulation
        2. 8.3.1.2 AC and Transient Response
      2. 8.3.2 System Start-Up Features
        1. 8.3.2.1 Programmable Soft-Start (NR/SS)
        2. 8.3.2.2 Internal Sequencing
          1. 8.3.2.2.1 Enable (EN)
          2. 8.3.2.2.2 Undervoltage Lockout (UVLO) Control
          3. 8.3.2.2.3 Active Discharge
        3. 8.3.2.3 Power-Good Output (PG)
      3. 8.3.3 Internal Protection Features
        1. 8.3.3.1 Foldback Current Limit (ICL)
        2. 8.3.3.2 Thermal Protection (Tsd)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Regulation
      2. 8.4.2 Disabled
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 External Component Selection
        1. 9.1.1.1 Adjustable Operation
        2. 9.1.1.2 ANY-OUT Programmable Output Voltage
        3. 9.1.1.3 ANY-OUT Operation
        4. 9.1.1.4 Increasing ANY-OUT Resolution for LILO Conditions
        5. 9.1.1.5 Recommended Capacitor Types
        6. 9.1.1.6 Input and Output Capacitor Requirements (CIN and COUT)
        7. 9.1.1.7 Feed-Forward Capacitor (CFF)
        8. 9.1.1.8 Noise-Reduction and Soft-Start Capacitor (CNR/SS)
      2. 9.1.2 Start Up
        1. 9.1.2.1 Soft-Start (NR/SS)
          1. 9.1.2.1.1 Inrush Current
        2. 9.1.2.2 Undervoltage Lockout (UVLO)
        3. 9.1.2.3 Power-Good (PG) Function
      3. 9.1.3 AC and Transient Performance
        1. 9.1.3.1 Power-Supply Rejection Ratio (PSRR)
        2. 9.1.3.2 Output Voltage Noise
        3. 9.1.3.3 Optimizing Noise and PSRR
          1. 9.1.3.3.1 Charge Pump Noise
        4. 9.1.3.4 Load Transient Response
      4. 9.1.4 DC Performance
        1. 9.1.4.1 Output Voltage Accuracy (VOUT)
        2. 9.1.4.2 Dropout Voltage (VDO)
          1. 9.1.4.2.1 Behavior When Transitioning From Dropout Into Regulation
      5. 9.1.5 Sequencing Requirements
      6. 9.1.6 Negatively Biased Output
      7. 9.1.7 Reverse Current
      8. 9.1.8 Power Dissipation (PD)
        1. 9.1.8.1 Estimating Junction Temperature
        2. 9.1.8.2 Recommended Area for Continuous Operation (RACO)
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Evaluation Models
        2. 12.1.1.2 Spice Models
      2. 12.1.2 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 接收文档更新通知
    4. 12.4 支持资源
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

DC Regulation

As Figure 8-1 shows, an LDO functions as a class-B amplifier in which the input signal is the internal reference voltage (VREF). VREF is designed to have a very low bandwidth at the input to the error amplifier through the use of a low-pass filter (VNR/SS).

As such, the reference can be considered as a pure dc input signal. The low output impedance of an LDO comes from the combination of the output capacitor and pass element. The pass element also presents a high input impedance to the source voltage when operating as a current source. A positive LDO can only source current because of the class-B architecture.

This device achieves a maximum of 0.75% output voltage accuracy primarily because of the high-precision band-gap voltage (VBG) that creates VREF. The low dropout voltage (VDO) reduces the thermal power dissipation required by the device to regulate the output voltage at a given current level, thereby improving system efficiency. These features combine to make this device a good approximation of an ideal voltage source.

GUID-578F2F22-9494-4EA8-B06A-6A09EFA2215A-low.gif
VOUT = VREF × (1 + R1 / R2).
Figure 8-1 Simplified Regulation Circuit