ZHCSLS0B July   2022  – April 2024 TPS929240-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Device Bias and Power
        1. 6.3.1.1 Power Bias (VBAT)
        2. 6.3.1.2 5V Low-Drop-Out Linear Regulator (VLDO)
        3. 6.3.1.3 Undervoltage Lockout (UVLO) and Power-On-Reset (POR)
        4. 6.3.1.4 Power Supply (SUPPLY)
        5. 6.3.1.5 Programmable Low Supply Warning
      2. 6.3.2 Constant Current Output
        1. 6.3.2.1 Reference Current with External Resistor (REF)
        2. 6.3.2.2 64-Step Programmable High-Side Constant-Current Output
      3. 6.3.3 PWM Dimming
        1. 6.3.3.1 PWM Generator
        2. 6.3.3.2 PWM Dimming Frequency
        3. 6.3.3.3 Blank Time
        4. 6.3.3.4 Phase Shift PWM Dimming
        5. 6.3.3.5 Linear Brightness Control
        6. 6.3.3.6 Exponential Brightness Control
      4. 6.3.4 FAIL-SAFE State Operation
      5. 6.3.5 On-Chip, 8-Bit, Analog-to-Digital Converter (ADC)
        1. 6.3.5.1 Minimum On Time for ADC Measurement
        2. 6.3.5.2 ADC Auto Scan
        3. 6.3.5.3 ADC Error
      6. 6.3.6 Diagnostic and Protection in NORMAL State
        1. 6.3.6.1  VBAT Undervoltage Lockout Diagnostics in NORMAL state
        2. 6.3.6.2  Low-Supply Warning Diagnostics in NORMAL State
        3. 6.3.6.3  Supply Undervoltage Diagnostics in NORMAL State
        4. 6.3.6.4  Reference Diagnostics in NORMAL state
        5. 6.3.6.5  Pre-Thermal Warning in NORMAL state
        6. 6.3.6.6  Overtemperature Protection in NORMAL state
        7. 6.3.6.7  Overtemperature Shutdown in NORMAL state
        8. 6.3.6.8  LED Open-Circuit Diagnostics in NORMAL state
        9. 6.3.6.9  LED Short-Circuit Diagnostics in NORMAL state
        10. 6.3.6.10 Single-LED Short-Circuit Detection in NORMAL state
        11. 6.3.6.11 EEPROM CRC Error in NORMAL state
        12. 6.3.6.12 Communication Loss Diagnostic in NORMAL State
        13. 6.3.6.13 Fault Masking in NORMAL state
        14.       53
      7. 6.3.7 Diagnostic and Protection in FAIL-SAFE states
        1. 6.3.7.1  Supply Undervoltage Lockout Diagnostics in FAIL-SAFE states
        2. 6.3.7.2  Low-Supply Warning Diagnostics in FAIL-SAFE states
        3. 6.3.7.3  Supply Undervoltage Diagnostics in FAIL-SAFE State
        4. 6.3.7.4  Reference Diagnostics in FAIL-SAFE states
        5. 6.3.7.5  Pre-Thermal Warning in FAIL-SAFE state
        6. 6.3.7.6  Overtemperature Protection in FAIL-SAFE state
        7. 6.3.7.7  Overtemperature Shutdown in FAIL-SAFE state
        8. 6.3.7.8  LED Open-Circuit Diagnostics in FAIL-SAFE state
        9. 6.3.7.9  LED Short-Circuit Diagnostics in FAIL-SAFE state
        10. 6.3.7.10 Single-LED Short-Circuit Detection in FAIL-SAFE state
        11. 6.3.7.11 EEPROM CRC Error in FAIL-SAFE State
        12. 6.3.7.12 Fault Masking in FAIL-SAFE state
        13.       Diagnostics Table in FAIL-SAFE State
      8. 6.3.8 OFAF Setup In FAIL-SAFE state
      9. 6.3.9 ERR Output
    4. 6.4 Device Functional Modes
      1. 6.4.1 POR State
      2. 6.4.2 INITIALIZATION state
      3. 6.4.3 NORMAL state
      4. 6.4.4 FAIL-SAFE state
      5. 6.4.5 PROGRAM state
    5. 6.5 Programming
      1. 6.5.1 FlexWire Protocol
        1. 6.5.1.1 Protocol Overview
        2. 6.5.1.2 UART Interface Address Setting
        3. 6.5.1.3 Status Response
        4. 6.5.1.4 Synchronization Byte
        5. 6.5.1.5 Device Address Byte
        6. 6.5.1.6 Register Address Byte
        7. 6.5.1.7 Data Frame
        8. 6.5.1.8 CRC Frame
        9. 6.5.1.9 Burst Mode
      2. 6.5.2 Registers Lock
      3. 6.5.3 Register Default Data
      4. 6.5.4 EEPROM Programming
        1. 6.5.4.1 Chip Selection by Pulling REF Pin High
        2. 6.5.4.2 Chip Selection by ADDR Pins Configuration
        3. 6.5.4.3 EEPROM Register Access and Burn
        4. 6.5.4.4 EEPROM PROGRAM State Exit
    6. 6.6 Register Maps
      1. 6.6.1 BRT Registers
      2. 6.6.2 IOUT Registers
      3. 6.6.3 CONF Registers
      4. 6.6.4 CTRL Registers
      5. 6.6.5 FLAG Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Smart Rear Lamp with Distributed LED Drivers
      2. 7.2.2 Design Requirements
      3. 7.2.3 Detailed Design Procedure
      4. 7.2.4 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 接收文档更新通知
    2. 8.2 支持资源
    3. 8.3 Trademarks
    4. 8.4 静电放电警告
    5. 8.5 术语表
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DCP|38
散热焊盘机械数据 (封装 | 引脚)
订购信息

UART Interface Address Setting

Each FlexWire bus supports maximum 16 slave devices. The TPS929240-Q1 has three pinouts including ADDR2, ADDR1, and ADDR0 for slave address configuration. There are additional 4-bit EEPROM register to program the slave address of the TPS929240-Q1. The register INTADDR sets the device slave address by either address pins setup or internal EEPROM register code.

If INTADDR is 1, the device uses the binary code in register DEVADDR[3:0] as slave address as shown in the below table.

If INTADDR is 0, the device uses DEVADDR[3] code together with external inputs on ADDR2, ADDR1 and ADDR0 as shown in the below table and ignore DEVADDR[2:0] code.

The address 0h to Fh can be used as slave address for up to 16 pieces of TPS929240-Q1 in the same FlexWire bus. Do not have two TPS929240-Q1 sharing the same slave address either setting by internal register DEVADDR or address pins configuration on ADDR2, ADDR1 and ADDR0.

The default value for DEVADDR[3:0] is 0h.

Table 6-11 Device Address Setting
Address(HEX) INTERNAL ADDRESS SETTING EXTERNAL ADDRESS SETTING
BIT3 BIT2 BIT1 BIT0 BIT3 BIT2 BIT1 BIT0
DEVADDR[3] DEVADDR[2] DEVADDR[1] DEVADDR[0] DEVADDR[3] ADDR2 ADDR1 ADDR0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1
4 0 1 0 0 0 1 0 0
5 0 1 0 1 0 1 0 1
6 0 1 1 0 0 1 1 0
7 0 1 1 1 0 1 1 1
8 1 0 0 0 1 0 0 0
9 1 0 0 1 1 0 0 1
A 1 0 1 0 1 0 1 0
B 1 0 1 1 1 0 1 1
C 1 1 0 0 1 1 0 0
D 1 1 0 1 1 1 0 1
E 1 1 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1