ZHCSLS0B July   2022  – April 2024 TPS929240-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Device Bias and Power
        1. 6.3.1.1 Power Bias (VBAT)
        2. 6.3.1.2 5V Low-Drop-Out Linear Regulator (VLDO)
        3. 6.3.1.3 Undervoltage Lockout (UVLO) and Power-On-Reset (POR)
        4. 6.3.1.4 Power Supply (SUPPLY)
        5. 6.3.1.5 Programmable Low Supply Warning
      2. 6.3.2 Constant Current Output
        1. 6.3.2.1 Reference Current with External Resistor (REF)
        2. 6.3.2.2 64-Step Programmable High-Side Constant-Current Output
      3. 6.3.3 PWM Dimming
        1. 6.3.3.1 PWM Generator
        2. 6.3.3.2 PWM Dimming Frequency
        3. 6.3.3.3 Blank Time
        4. 6.3.3.4 Phase Shift PWM Dimming
        5. 6.3.3.5 Linear Brightness Control
        6. 6.3.3.6 Exponential Brightness Control
      4. 6.3.4 FAIL-SAFE State Operation
      5. 6.3.5 On-Chip, 8-Bit, Analog-to-Digital Converter (ADC)
        1. 6.3.5.1 Minimum On Time for ADC Measurement
        2. 6.3.5.2 ADC Auto Scan
        3. 6.3.5.3 ADC Error
      6. 6.3.6 Diagnostic and Protection in NORMAL State
        1. 6.3.6.1  VBAT Undervoltage Lockout Diagnostics in NORMAL state
        2. 6.3.6.2  Low-Supply Warning Diagnostics in NORMAL State
        3. 6.3.6.3  Supply Undervoltage Diagnostics in NORMAL State
        4. 6.3.6.4  Reference Diagnostics in NORMAL state
        5. 6.3.6.5  Pre-Thermal Warning in NORMAL state
        6. 6.3.6.6  Overtemperature Protection in NORMAL state
        7. 6.3.6.7  Overtemperature Shutdown in NORMAL state
        8. 6.3.6.8  LED Open-Circuit Diagnostics in NORMAL state
        9. 6.3.6.9  LED Short-Circuit Diagnostics in NORMAL state
        10. 6.3.6.10 Single-LED Short-Circuit Detection in NORMAL state
        11. 6.3.6.11 EEPROM CRC Error in NORMAL state
        12. 6.3.6.12 Communication Loss Diagnostic in NORMAL State
        13. 6.3.6.13 Fault Masking in NORMAL state
        14.       53
      7. 6.3.7 Diagnostic and Protection in FAIL-SAFE states
        1. 6.3.7.1  Supply Undervoltage Lockout Diagnostics in FAIL-SAFE states
        2. 6.3.7.2  Low-Supply Warning Diagnostics in FAIL-SAFE states
        3. 6.3.7.3  Supply Undervoltage Diagnostics in FAIL-SAFE State
        4. 6.3.7.4  Reference Diagnostics in FAIL-SAFE states
        5. 6.3.7.5  Pre-Thermal Warning in FAIL-SAFE state
        6. 6.3.7.6  Overtemperature Protection in FAIL-SAFE state
        7. 6.3.7.7  Overtemperature Shutdown in FAIL-SAFE state
        8. 6.3.7.8  LED Open-Circuit Diagnostics in FAIL-SAFE state
        9. 6.3.7.9  LED Short-Circuit Diagnostics in FAIL-SAFE state
        10. 6.3.7.10 Single-LED Short-Circuit Detection in FAIL-SAFE state
        11. 6.3.7.11 EEPROM CRC Error in FAIL-SAFE State
        12. 6.3.7.12 Fault Masking in FAIL-SAFE state
        13.       Diagnostics Table in FAIL-SAFE State
      8. 6.3.8 OFAF Setup In FAIL-SAFE state
      9. 6.3.9 ERR Output
    4. 6.4 Device Functional Modes
      1. 6.4.1 POR State
      2. 6.4.2 INITIALIZATION state
      3. 6.4.3 NORMAL state
      4. 6.4.4 FAIL-SAFE state
      5. 6.4.5 PROGRAM state
    5. 6.5 Programming
      1. 6.5.1 FlexWire Protocol
        1. 6.5.1.1 Protocol Overview
        2. 6.5.1.2 UART Interface Address Setting
        3. 6.5.1.3 Status Response
        4. 6.5.1.4 Synchronization Byte
        5. 6.5.1.5 Device Address Byte
        6. 6.5.1.6 Register Address Byte
        7. 6.5.1.7 Data Frame
        8. 6.5.1.8 CRC Frame
        9. 6.5.1.9 Burst Mode
      2. 6.5.2 Registers Lock
      3. 6.5.3 Register Default Data
      4. 6.5.4 EEPROM Programming
        1. 6.5.4.1 Chip Selection by Pulling REF Pin High
        2. 6.5.4.2 Chip Selection by ADDR Pins Configuration
        3. 6.5.4.3 EEPROM Register Access and Burn
        4. 6.5.4.4 EEPROM PROGRAM State Exit
    6. 6.6 Register Maps
      1. 6.6.1 BRT Registers
      2. 6.6.2 IOUT Registers
      3. 6.6.3 CONF Registers
      4. 6.6.4 CTRL Registers
      5. 6.6.5 FLAG Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Smart Rear Lamp with Distributed LED Drivers
      2. 7.2.2 Design Requirements
      3. 7.2.3 Detailed Design Procedure
      4. 7.2.4 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 接收文档更新通知
    2. 8.2 支持资源
    3. 8.3 Trademarks
    4. 8.4 静电放电警告
    5. 8.5 术语表
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DCP|38
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

TPS929240-Q1 is an automotive, 24-channel LED driver with FlexWire interface to address increasing requirements for individual control of each LED string. Each of the device channels can support both analog dimming and pulse-width-modulation (PWM) dimming, configured through its FlexWire serial interface. The internal electrically erasable programmable read-only memory (EEPROM) allows users to configure device in the scenario of communication loss to fulfill system level safety requirements.

The FlexWire interface is a robust address-based master-slave interface with flexible baud rate. The interface is based on multi-frame universal, asynchronous, receiver-transmitter (UART) protocol. The unique synchronization frame of FlexWire reduces system cost by saving external crystal oscillators. It also supports various physical layer with the help of external physical layer transceiver such as CAN or LIN transceivers. The embedded CRC correction is able to ensure robust communication in automotive environments. The FlexWire interface is easily supported by most of MCUs in the markets.

Each output is a constant current source with individually programmable current output and PWM duty cycle. PWM phase shift is supported for the output channels to improve the EMC performance and reduce the output noise. Each channel features various diagnostics including LED open-circuit, short-circuit and single-LED short-circuit detection. The on-chip analog-digital convertor (ADC) allows the controller to real-time monitor loading conditions.

To further increase robustness, the unique fail-safe of the device state machine allows automatic switching to FAIL-SAFE states in the case of communication loss, for example, MCU failure. The device supports programming fail-safe settings with user-programmable EEPROM. In FAIL-SAFE states, the device supports different configurations if output fails, such as one-fails-all-fail or one-fails-others-on. Each channel can be independently programmed as on or off in FAIL-SAFE states. The FAIL-SAFE state machine also allows the system to function with pre-programmed EEPROM settings without presence of any controller in the system, also known as stand-alone operation.

The microcontroller can access each of the devices through the FlexWire interface. By setting and reading back the registers, the master, which is the microcontroller, has full control over the device and LEDs. All EEPROMs are pre-programmed to default values. TI recommends that users program the EEPROM at the end-of-line for application-specific settings and FAIL-SAFE configurations.