ZHCSN32B June   2019  – July 2024 TPS99001-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics—Analog to Digital Converter
    6. 5.6  Electrical Characteristics—Voltage Regulators
    7. 5.7  Electrical Characteristics—Temperature and Voltage Monitors
    8. 5.8  Electrical Characteristics—Current Consumption
    9. 5.9  Power-Up Timing Requirements
    10. 5.10 Power-Down Timing Requirements
    11. 5.11 Timing Requirements—Sequencer Clock
    12. 5.12 Timing Requirements—Host and Diagnostic Port SPI Interface
    13. 5.13 Timing Requirements—ADC Interface
    14. 5.14 Switching Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog to Digital Converter
        1. 6.3.1.1 Analog to Digital Converter Input Table
      2. 6.3.2 Power Sequencing and Monitoring
        1. 6.3.2.1 Power Monitoring
      3. 6.3.3 DMD Mirror Voltage Regulator
      4. 6.3.4 Low Dropout Regulators
      5. 6.3.5 System Monitoring Features
        1. 6.3.5.1 Windowed Watchdog Circuits
        2. 6.3.5.2 Die Temperature Monitors
        3. 6.3.5.3 External Clock Ratio Monitor
      6. 6.3.6 Communication Ports
        1. 6.3.6.1 Serial Peripheral Interface (SPI)
    4. 6.4 Device Functional Modes
      1. 6.4.1 OFF
      2. 6.4.2 STANDBY
      3. 6.4.3 POWERING_DMD
      4. 6.4.4 DISPLAY_RDY
      5. 6.4.5 PARKING
      6. 6.4.6 SHUTDOWN
    5. 6.5 Register Maps
      1. 6.5.1 System Status Registers
      2. 6.5.2 ADC Control
      3. 6.5.3 General Fault Status
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Headlight
        1. 7.2.1.1 Design Requirements
  9. Power Supply Recommendations
    1. 8.1 TPS99001-Q1 Power Supply Architecture
    2. 8.2 TPS99001-Q1 Power Outputs
    3. 8.3 Power Supply Architecture
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Power/High Current Signals
      2. 9.1.2 Sensitive Analog Signals
      3. 9.1.3 High-Speed Digital Signals
      4. 9.1.4 Kelvin Sensing Connections
      5. 9.1.5 Ground Separation
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

DMD Mirror Voltage Regulator

The DMD mirror voltage regulator generates three high-voltage supply rails: DMD_VRESET, DMD_VBIAS, and DMD_VOFFSET. The DMD regulator uses a switching regulator where the inductor is time-shared between all three supplies. The inductor is charged up to a certain current level and then discharged into one of the three supplies. In cases where a supply does not need additional charge, the time slot normally allocated to that supply is skipped and the supplies requiring more charge receive all of the charging time.

For proper operation, specific bulk capacitance values are required for each supply rail. Refer to Electrical Characteristics—Temperature and Voltage Monitors for recommended values for the capacitors. The regulator contains active power down/discharge circuits. To meet timing requirements, total capacitance (actual capacitance, not the nominal) must not exceed these levels by substantial amounts, as defined in Electrical Characteristics—Temperature and Voltage Monitors. Power-down timing should be verified in each specific system design. Too low of a total capacitance will result in excessive ripple on the supply rails which may impact DMD mirror dynamic behavior. Care should be taken to use capacitors that maintain the recommended minimum capacitance over the expected operating device temperature range. Large-size packages are required here that do not lose so much capacitance at high voltages.

Although the average current drawn by the DMD on these supplies is small (10s of mA worst case), the peak currents can be several amps over 10s of nano-seconds. To supply this peak current, the use of small-value, high-frequency decoupling capacitors should be included as close as practical to the DMD power input pins.

TPS99001-Q1 DMD Voltage Regulator CircuitFigure 6-5 DMD Voltage Regulator Circuit