ZHCSN32B June   2019  – July 2024 TPS99001-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics—Analog to Digital Converter
    6. 5.6  Electrical Characteristics—Voltage Regulators
    7. 5.7  Electrical Characteristics—Temperature and Voltage Monitors
    8. 5.8  Electrical Characteristics—Current Consumption
    9. 5.9  Power-Up Timing Requirements
    10. 5.10 Power-Down Timing Requirements
    11. 5.11 Timing Requirements—Sequencer Clock
    12. 5.12 Timing Requirements—Host and Diagnostic Port SPI Interface
    13. 5.13 Timing Requirements—ADC Interface
    14. 5.14 Switching Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog to Digital Converter
        1. 6.3.1.1 Analog to Digital Converter Input Table
      2. 6.3.2 Power Sequencing and Monitoring
        1. 6.3.2.1 Power Monitoring
      3. 6.3.3 DMD Mirror Voltage Regulator
      4. 6.3.4 Low Dropout Regulators
      5. 6.3.5 System Monitoring Features
        1. 6.3.5.1 Windowed Watchdog Circuits
        2. 6.3.5.2 Die Temperature Monitors
        3. 6.3.5.3 External Clock Ratio Monitor
      6. 6.3.6 Communication Ports
        1. 6.3.6.1 Serial Peripheral Interface (SPI)
    4. 6.4 Device Functional Modes
      1. 6.4.1 OFF
      2. 6.4.2 STANDBY
      3. 6.4.3 POWERING_DMD
      4. 6.4.4 DISPLAY_RDY
      5. 6.4.5 PARKING
      6. 6.4.6 SHUTDOWN
    5. 6.5 Register Maps
      1. 6.5.1 System Status Registers
      2. 6.5.2 ADC Control
      3. 6.5.3 General Fault Status
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Headlight
        1. 7.2.1.1 Design Requirements
  9. Power Supply Recommendations
    1. 8.1 TPS99001-Q1 Power Supply Architecture
    2. 8.2 TPS99001-Q1 Power Outputs
    3. 8.3 Power Supply Architecture
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Power/High Current Signals
      2. 9.1.2 Sensitive Analog Signals
      3. 9.1.3 High-Speed Digital Signals
      4. 9.1.4 Kelvin Sensing Connections
      5. 9.1.5 Ground Separation
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The TPS99001-Q1 is an integral component of the DLP553x-Q1 and DLP462x-Q1 chipset, which also includes the DLPC23x-Q1 DMD display controller. The TPS99001-Q1 provides a high-voltage, high-precision, three-rail regulator to cost-effectively create DMD mirror control voltages (16V, 8.5V, –10V). A complete system power monitor and DMD mirror parking solution is included to increase system robustness and reduce cost. In addition, the TPS99001-Q1 includes numerous system monitoring and diagnostic features, such as configurable ADCs and watchdogs.

An integrated 12-bit ADC provides useful information about the operating condition of the system. Several external ADC channels are included for general usage (LED temperature measurement, and so on). One of the external ADC channels includes a differential input amplifier and is dedicated to LED current measurement. The DLPC23x-Q1 and TPS99001-Q1 ADC control blocks support up to 63 samples per video frame, with precise hardware alignment of samples to the DMD sequence timeline.

Two SPI buses are included. The first bus is intended for command and control, and the second is a read-only bus for optional redundant system condition monitoring. The SPI ports include support for byte-level parity checking.

Two windowed watchdog circuits are included to provide validation of DLPC23x-Q1 microprocessor operation and monitoring of DMD sequencer activity. The TPS99001-Q1 also includes on-die temperature threshold monitoring and a monitor circuit to validate the external clock ratio (of the SEQ_CLK) against an internal oscillator.