ZHCSPW5B September   2022  – February 2023 TPSM365R3 , TPSM365R6

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 说明(续)
  7. 器件比较表
  8. 引脚配置和功能
  9. 规格
    1. 8.1  绝对最大额定值
    2. 8.2  ESD 等级
    3. 8.3  建议运行条件
    4. 8.4  热性能信息
    5. 8.5  电气特性
    6. 8.6  系统特性
    7. 8.7  典型特性
    8. 8.8  典型特性:VIN = 12V
    9. 8.9  典型特性:VIN = 24V
    10. 8.10 典型特性:VIN=48V
  10. 详细说明
    1. 9.1 概述
    2. 9.2 功能方框图
    3. 9.3 特性说明
      1. 9.3.1  输入电压范围
      2. 9.3.2  输出电压选择
      3. 9.3.3  输入电容器
      4. 9.3.4  输出电容器
      5. 9.3.5  启用、启动和关断
      6. 9.3.6  外部 CLK SYNC(通过 MODE/SYNC)
        1. 9.3.6.1 脉冲相关 MODE/SYNC 引脚控制
      7. 9.3.7  开关频率 (RT)
      8. 9.3.8  电源正常输出运行
      9. 9.3.9  内部 LDO、VCC UVLO 和 BIAS 输入
      10. 9.3.10 自举电压和 VBOOT-UVLO(BOOT 端子)
      11. 9.3.11 展频
      12. 9.3.12 软启动和对压差进行软恢复
        1. 9.3.12.1 从压降中恢复
      13. 9.3.13 过流保护 (OCP)
      14. 9.3.14 热关断
    4. 9.4 器件功能模式
      1. 9.4.1 关断模式
      2. 9.4.2 待机模式
      3. 9.4.3 运行模式
        1. 9.4.3.1 CCM 模式
        2. 9.4.3.2 自动模式 - 轻负载运行
          1. 9.4.3.2.1 二极管仿真
          2. 9.4.3.2.2 降频
        3. 9.4.3.3 FPWM 模式 - 轻负载运行
        4. 9.4.3.4 最短导通时间(高输入电压)运行
      4. 9.4.4 压降
  11. 10应用和实施
    1. 10.1 应用信息
    2. 10.2 典型应用
      1. 10.2.1 适用于工业应用的 600mA 和 300mA 同步降压稳压器
        1. 10.2.1.1 设计要求
        2. 10.2.1.2 详细设计过程
          1. 10.2.1.2.1  使用 WEBENCH® 工具创建定制设计方案
          2. 10.2.1.2.2  输出电压设定点
          3. 10.2.1.2.3  开关频率选择
          4. 10.2.1.2.4  输入电容器选型
          5. 10.2.1.2.5  输出电容器选型
          6. 10.2.1.2.6  VCC
          7. 10.2.1.2.7  CFF 选型
          8. 10.2.1.2.8  电源正常信号
          9. 10.2.1.2.9  最高环境温度
          10. 10.2.1.2.10 其他连接
        3. 10.2.1.3 应用曲线
    3. 10.3 电源相关建议
    4. 10.4 布局
      1. 10.4.1 布局指南
        1. 10.4.1.1 接地及散热注意事项
      2. 10.4.2 布局示例
  12. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 11.1.2 器件命名规则
      3. 11.1.3 开发支持
        1. 11.1.3.1 使用 WEBENCH® 工具创建定制设计方案
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 术语表
  13. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

输出电压选择

可调输出电压型号

对于可调节输出电压型号TPSM365Rx 具有 1.0V 至 13V 的可调节输出电压范围。设置输出电压需要两个电阻器 RFBT 和 RFBB(请参阅图 9-2)。在 VOUT 的调节点处与 FB 引脚之间连接 RFBT。在 FB 引脚与 AGND 之间连接 RFBBTPSM365Rx 系列中具有可调输出电压选项的型号均采用 1V 内部基准电压进行设计。RFBT 的值可以使用方程式 10 计算。

方程式 1. R F B T k Ω = R F B B k Ω × ( V O U T [ V ] 1   V - 1 )

对于可调节输出选项,可能还需要一个与 RFBT 并联的前馈电容器 CFF 来优化瞬态响应。有关更多信息,请参阅节 10.2.1.2.7对于固定输出型号,不需要额外的电阻分压器或前馈电容器 CFF

GUID-20220818-SS0I-SS9B-K3LK-H0SL7THZBKWW-low.svg图 9-2 为可调输出型号设置输出电压
表 9-1 标准 RFBT 值、建议的 FSW 和最小 COUT
VOUT (V) RFBT (kΩ) (1) 建议的 FSW (kHz) COUT(MIN) (µF)(有效) VOUT (V) RFBT (kΩ) (1) 建议的 FSW (kHz) COUT(MIN) (µF)(有效)
1.0 短路 400 300 3.3 23.2 800 40
1.2 2 500 200 5.0 40.2 1000 25
1.5 4.99 500 160 7.5 64.9 1300 20
1.8 8.06 600 120 10 90.9 1500 15
2.0 10 600 100 12 110 2000 5
2.5 15 750 65 13 120 2200 5
3.0 20 750 50
RFBB = 10kΩ

对于大多数应用,选择值为 10kΩ 的 RFBB。RFBT 阻值越大,所消耗的直流电流就越小,如果轻负载效率至关重要,则必须这样做。但是,TI 不建议 RFBT 值大于 1MΩ,因为这样会使反馈路径更容易受到噪声的影响。使用较大的反馈电阻时,通常需要更仔细地考虑反馈路径布局。请使反馈布线尽可能短,同时使反馈布线远离 PCB 的噪声区域。有关布局建议的更多信息,请参阅节 10.4

固定输出电压型号

TPSM365Rx 用作固定输出选项(无外部电阻)时,只需将 FB/BIAS 连接到输出端 (VOUT)。3.3V 或 5V 固定输出型号均在出厂时经过修整,为特定器件所独有。有关固定输出型号的更多详细信息,请参阅节 6