ZHCSUY3 August   2024 TPSM8287A12M , TPSM8287A15M

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件选项
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 I2C 接口时序特性
    7. 6.7 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  固定频率 DCS 控制拓扑
      2. 7.3.2  强制 PWM 和省电模式
      3. 7.3.3  精密使能
      4. 7.3.4  启动
      5. 7.3.5  开关频率选择
      6. 7.3.6  输出电压设置
        1. 7.3.6.1 输出电压设定点
        2. 7.3.6.2 输出电压范围
        3. 7.3.6.3 非默认输出电压设定点
        4. 7.3.6.4 动态电压调节 (DVS)
      7. 7.3.7  补偿 (COMP)
      8. 7.3.8  模式选择/时钟同步 (MODE/SYNC)
      9. 7.3.9  展频时钟 (SSC)
      10. 7.3.10 输出放电
      11. 7.3.11 欠压锁定 (UVLO)
      12. 7.3.12 过压锁定 (OVLO)
      13. 7.3.13 过流保护
        1. 7.3.13.1 逐周期电流限制
        2. 7.3.13.2 断续模式
        3. 7.3.13.3 限流模式
      14. 7.3.14 电源正常 (PG)
        1. 7.3.14.1 电源正常独立、主器件行为
        2. 7.3.14.2 电源正常辅助器件行为
      15. 7.3.15 遥感
      16. 7.3.16 热警告和热关断
      17. 7.3.17 堆叠操作
    4. 7.4 器件功能模式
      1. 7.4.1 上电复位 (POR)
      2. 7.4.2 欠压锁定
      3. 7.4.3 待机
      4. 7.4.4 导通
    5. 7.5 编程
      1. 7.5.1 串行接口说明
      2. 7.5.2 标准模式、快速模式、快速+ 模式协议
      3. 7.5.3 I2C 更新序列
      4. 7.5.4 I2C 寄存器复位
  9. 器件寄存器
  10. 应用和实施
    1. 9.1 应用信息
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
        1. 9.2.2.1 选择输入电容器
        2. 9.2.2.2 选择目标环路带宽
        3. 9.2.2.3 选择补偿电阻器
        4. 9.2.2.4 选择输出电容器
        5. 9.2.2.5 选择补偿电容器 CComp1
        6. 9.2.2.6 选择补偿电容器 CComp2
      3. 9.2.3 应用曲线
    3. 9.3 使用四个 TPSM8287A1xM 并联运行的典型应用
      1. 9.3.1 设计要求
      2. 9.3.2 详细设计过程
        1. 9.3.2.1 选择输入电容器
        2. 9.3.2.2 选择目标环路带宽
        3. 9.3.2.3 选择补偿电阻器
        4. 9.3.2.4 选择输出电容器
        5. 9.3.2.5 选择补偿电容器 CComp1
        6. 9.3.2.6 选择补偿电容器 CComp2
      3. 9.3.3 应用曲线
    4. 9.4 电源相关建议
    5. 9.5 布局
      1. 9.5.1 布局指南
      2. 9.5.2 布局示例
  11. 10器件和文档支持
    1. 10.1 器件支持
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 文档支持
      1. 10.2.1 相关文档
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 商标
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息
    1. 12.1 卷带包装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

设计要求

表 9-2 列出了该 TPSM8287A12BBM 器件应用示例的运行参数。

表 9-2 设计参数
符号 参数
VIN 输入电压 2.7V 至 6.0V
VOUT 输出电压 0.90V
TOLVOUT 应用允许的输出电压容差 ±4.0%
TOLDC TPSM8287A12BBM 的输出电压容差(直流精度) ±1.0%
ΔIOUT(step) 输出电流负载阶跃 ±8.0A
tt 负载步长跃变时间 1μs
fSW 开关频率 2.25MHz
L 集成电感器 100nH
TOLIND 集成电感器容差 ±20%
gm 误差放大器跨导 1.5mS
τ 仿真电流时间常数 12.5μs
TOLτ 仿真电流时间常数的容差 ±30%
BWτ 目标环路带宽 300kHz
NΦ 并联器件数量(相位) 1

初步计算

电源的最大允许偏差为 ±4.0%。TPSM8287A1xM 的直流精度指定为 ±1.0%,因此瞬态期间的最大输出电压变化可以通过以下方式进行计算:

方程式 5. VOUT=±VOUT×(TOLVOUTTOLDC)
方程式 6. V O U T = ± V O U T × ( 4.0 %   1.0 % ) = ± 27 m V

方程式 36 计算峰峰值电感器电流纹波,它在最大输入电压时达到最大值:

方程式 7. IL(PP)=VOUTVIN(max)VIN(max)  VOUTL×fsw
方程式 8. I L ( P P ) = 0.9 6.0 6.0   0.9 100 × 10 9 × 2.25 × 10 6 = 3.4 A

当应用的负载阶跃与电感器纹波电流的峰值(或谷值)完全同时发生时,就会出现最大负载阶跃,其值由下公式给出:

方程式 9. IOUT(max)=IOUT(step)+IL(PP)2×
方程式 10. I OUT(max) = 8.0 + 3.4 2 × 1 = 9.7 A