SLWS224E August   2010  – January 2016 TRF372017

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Conditions
    3. 6.3 Thermal Information
    4. 6.4 Electrical Characteristics
    5. 6.5 Timing Requirements - SPI: Writing Phase
    6. 6.6 Timing Requirements - SPI: Read-Back Phase
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Integer and Fractional Mode Selection
      2. 7.3.2  Description of PLL Structure
        1. 7.3.2.1 Selecting PLL Divider Values
        2. 7.3.2.2 Setup Example for Integer Mode
        3. 7.3.2.3 Setup Example for Fractional Mode
      3. 7.3.3  Fractional Mode Setup
      4. 7.3.4  Selecting the VCO and VCO Frequency Control
      5. 7.3.5  External VCO
      6. 7.3.6  VCO Test Mode
      7. 7.3.7  Lock Detect
      8. 7.3.8  Tx Divider
      9. 7.3.9  LO Divider
      10. 7.3.10 Mixer
      11. 7.3.11 Disabling Outputs
      12. 7.3.12 Power Supply Distribution
      13. 7.3.13 Carrier Feedthrough Cancellation
      14. 7.3.14 Internal Baseband Bias Voltage Generation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Powersave Mode
    5. 7.5 Register Maps
      1. 7.5.1 Serial Interface Programming Registers Definition
        1. 7.5.1.1 PLL SPI Registers
          1. 7.5.1.1.1 Register 1
          2. 7.5.1.1.2 Register 2
          3. 7.5.1.1.3 Register 3
          4. 7.5.1.1.4 Register 4
          5. 7.5.1.1.5 Register 5
          6. 7.5.1.1.6 Register 6
          7. 7.5.1.1.7 Register 7
        2. 7.5.1.2 Readback Mode
          1. 7.5.1.2.1 Readback From the Internal Registers Banks
            1. 7.5.1.2.1.1 Register 0 Write
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 DAC Interfacing With External Baseband Bias Voltage
        2. 8.2.2.2 DAC Interface Using Internal VCM Generation
        3. 8.2.2.3 LO Outputs
        4. 8.2.2.4 Loop Filter
        5. 8.2.2.5 ESD Sensitivity
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TRF372017 is suited for quadrature up-conversion applications such as wireless radio transmitters.

8.2 Typical Application

TRF372017 app_sch_lws221.gif

8.2.1 Design Requirements

Table 22 shows the design requirements for this application.

Table 22. Quadrature Up-Converter Design Requirements for Wireless Transmitter Application

PARAMETER REQUIREMENT(1) TRF372017 PERFORMANCE
Gain –5 to 0 dB –3.1 dB
Noise figure, NF <21 dB 19 dB
3rd order intercept (IIP3) >+20 dBm +25 dBm
1dB compression (P1dB) >+10 dBm +11.5 dBm
ACPR >70 dBc 75 dBc
RF output frequency range 1500 to 2500 MHz 300 to 4300 MHz
LO input frequency range 1000 to 3000 MHz 300 to 4800 MHz
IF input frequency range DC - 150 MHz DC - 1 GHz
LO phase noise <–130 dBc/Hz, 1 GHz, 1 MHz offset –137 dBc/Hz, 1 GHz, 1 MHz offset
(1) These requirements represent a hypothetical application and do not reflect the performance of the TRF372017.

8.2.2 Detailed Design Procedure

8.2.2.1 DAC Interfacing With External Baseband Bias Voltage

Common-mode voltage on the baseband inputs can be generated either internally or externally. An external interface must provide 1.7-V DC and any necessary filtering. A typical interface to a DAC device is shown in Figure 86.

TRF372017 DAC_if1_lws221.gif Figure 86. DAC to TRF372017 Interface With External VCM Generation

8.2.2.2 DAC Interface Using Internal VCM Generation

A typical DAC to TRF372017 interface using internal VCM generation is shown in Figure 87.

TRF372017 DAC_if2_lws224.gif Figure 87. DAC to TRF372017 Interface With Internal VCM Generation

8.2.2.3 LO Outputs

The LO outputs are open collector outputs. They require a pullup to VCC. 75-Ω pullup resistors to VCC with local decoupling provides a good broadband match and is shown in an example circuit in Figure 88. An inductor pullup in parallel with a cap can provide a tuned load for excellent narrowband load matching.

TRF372017 lo_out_lws221.gif Figure 88. Example LO_OUT Circuit for Broadband Operation

8.2.2.4 Loop Filter

Loop filter design is critical for achieving low closed loop phase noise. Some typical loop filter component values are given in Table 23, referenced to designators in Figure 89. These loop filters are designed using charge pump current of 1.94 mA to minimize noise.

Table 23. Typical Loop Filter Components

fPFD (MHz) C1 (pF) C2 (pF) R2 (kΩ) C3 (pF) R3 (kΩ) C4 (pF) R4 (kΩ)
40 1000 10000 0.47 39 1.4 1.8 3.3
1.6 47 560 10 4.7 5 open 0
6.4 100 1000 5 20 5 open 0
10 270 4700 1.5 4700 1.5 open 0
30.72 2200 20000 0.47 220 0.475 220 0.475
TRF372017 loop_flt_lws221.gif Figure 89. Loop Filter Component Reference Designators

8.2.2.5 ESD Sensitivity

RF devices may be extremely sensitive to electrostatic discharge (ESD) (see ). To prevent damage from electrostatic discharge (ESD), devices must be stored and handled in a way that prevents the build up of electrostatic voltages that exceed the rated level. Rated electrostatic discharge (ESD) levels shall also not be exceeded while the device is installed on a printed-circuit board.

8.2.3 Application Curves

TRF372017 G078_LWS224.gif Figure 90. Gain at 2300-MHz Distribution
TRF372017 G080_LWS224.gif Figure 92. OIP3 at 2300-MHz Distribution
TRF372017 G082_LWS224.gif Figure 94. Unadjusted Sideband Suppression
at 2300-MHz Distribution
TRF372017 G079_LWS224.gif Figure 91. P1dB at 2300-MHz Distribution
TRF372017 G081_LWS224.gif Figure 93. Unadjusted Carrier Suppression
at 2300-MHz Distribution