ZHCSJI4F July   2006  – March 2015 TS3A4751

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     简化原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics for 1.8-V Supply
    6. 6.6 Electrical Characteristics for 3-V Supply
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Logic Inputs
      2. 8.1.2 Analog Signal Levels
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 接收文档更新通知
    2. 11.2 社区资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics for 3-V Supply

VCC = 2.7 V to 3.6 V, TA = –40°C to 85°C, VIH = 1.4 V, VIL = 0.5 V (unless otherwise noted).(2)(1)
PARAMETER TEST CONDITIONS TA MIN TYP(3) MAX UNIT
ANALOG SWITCH
VCOM, VNO Analog signal range 0 VCC V
Ron ON-state resistance VCC = 2.7 V, ICOM  = –100 mA,
VNO  = 1.5 V
25°C 0.7 0.9
Full 1.1
ΔRon ON-state resistance match between channels(4) VCC = 2.7 V, ICOM  = –100 mA,
VNO  = 1.5 V
25°C 0.03 0.05
Full 0.15
Ron(flat) ON-state resistance flatness(5) VCC = 2.7 V, ICOM  = –100 mA,
VNO  = 1 V, 1.5 V, 2 V
25°C 0.23 0.4
Full 0.5
INO(OFF) NO
OFF leakage current(6)
VCC = 3.6 V, VCOM  = 0.3 V, 3 V,
VNO  = 3 V, 0.3 V
25°C –2 1 2 nA
Full –18 18
ICOM(OFF) COM
OFF leakage current(6)
VCC = 3.6 V, VCOM  = 0.3 V, 3 V,
VNO  = 3 V, 0.3 V
25°C –2 1 2 nA
Full –18 18
ICOM(ON) COM
ON leakage current(6)
VCC = 3.6 V, VCOM  = 0.3 V, 3 V,
VNO = 0.3 V, 3 V, or floating
25°C –2.5 0.01 2.5 nA
Full –5 5
DYNAMIC
tON Turn-on time VNO  = 1.5 V, RL = 50 Ω,
CL = 35 pF, See Figure 1
25°C 5 14 ns
Full 15
tOFF Turn-off time VNO  = 1.5 V, RL = 50 Ω,
CL = 35 pF, See Figure 1
25°C 4 9 ns
Full 10
QC Charge injection VGEN = 0, RGEN = 0, CL = 1 nF,
See Figure 5
25°C 3 pC
CNO(OFF) NO OFF capacitance f = 1 MHz, See Figure 2 25°C 23 pF
CCOM(OFF) COM OFF capacitance f = 1 MHz, See Figure 2 25°C 20 pF
CCOM(ON) COM ON capacitance f = 1 MHz, See Figure 2 25°C 43 pF
BW Bandwidth RL = 50 Ω, Switch ON 25°C 125 MHz
OISO OFF isolation(7) RL = 50 Ω, CL = 5 pF,
See Figure 3
f = 10 MHz 25°C –40 dB
f = 1 MHz –62
XTALK Crosstalk RL = 50 Ω, CL = 5 pF,
See Figure 3
f = 10 MHz 25°C –73 dB
f = 1 MHz –95
THD Total harmonic distortion f = 20 Hz to 20 kHz, VCOM = 2 VP-P RL = 32 Ω 25°C 0.04%
RL = 600 Ω 0.003%
DIGITAL CONTROL INPUTS (IN1–IN4)
VIH Input logic high Full 1.4 V
VIL Input logic low Full 0.5 V
IIN Input leakage current VI = 0 or VCC 25°C 0.5 1 nA
Full –20 20
SUPPLY
VCC Power-supply range 1.6 3.6 V
ICC Positive-supply current VCC = 3.6 V, VIN = 0 or VCC 25°C 0.075 μA
Full 0.75
Parts are tested at 85°C and specified by design and correlation over the full temperature range.
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
Typical values are at VCC = 3 V, TA = 25°C.
Δron = ron(max) – ron(min)
Flatness is defined as the difference between the maximum and minimum value of ron as measured over the specified analog signal ranges.
Leakage parameters are 100% tested at the maximum-rated hot operating temperature and specified by correlation at TA = 25°C.
OFF isolation = 20log10 (VCOM/VNO), VCOM = output, VNO = input to OFF switch
TS3A4751 swtimes.gifFigure 1. Switching Times
TS3A4751 nocap_cds227.gifFigure 2. NO and COM Capacitance
TS3A4751 offiso_cds227.gifFigure 3. OFF Isolation, Bandwidth, and Crosstalk
TS3A4751 pmi_cds227.gif
CL includes probe and jig capacitance.
Figure 4. Total Harmonic Distortion (THD)
TS3A4751 chinj_cds227.gifFigure 5. Charge Injection (QC)