ZHCSDC7C July   2014  – June 2017 TUSB8020B

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 3.3-V I/O Electrical Characteristics
    6. 7.6 Power-Up Timing Requirements
    7. 7.7 Hub Input Supply Current
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Battery Charging Features
      2. 8.3.2 USB Power Management
      3. 8.3.3 One-Time Programmable (OTP) Configuration
      4. 8.3.4 Clock Generation
        1. 8.3.4.1 Crystal Requirements
        2. 8.3.4.2 Input Clock Requirements
      5. 8.3.5 Power-Up and Reset
    4. 8.4 Device Functional Modes
      1. 8.4.1 External Configuration Interface
      2. 8.4.2 I2C EEPROM Operation
      3. 8.4.3 SMBus Slave Operation
    5. 8.5 Register Maps
      1. 8.5.1 Configuration Registers
        1. 8.5.1.1  ROM Signature Register (offset = 0h) [reset = 0h]
        2. 8.5.1.2  Vendor ID LSB Register (offset = 1h) [reset = 51h]
        3. 8.5.1.3  Vendor ID MSB Register (offset = 2h) [reset = 4h]
        4. 8.5.1.4  Product ID LSB Register (offset = 3h) [reset = 25h]
        5. 8.5.1.5  Product ID MSB Register (offset = 4h) [reset = 80h]
        6. 8.5.1.6  Device Configuration Register (offset = 5h) [reset = 1Xh]
        7. 8.5.1.7  Battery Charging Support Register (offset = 6h) [reset = 0Xh]
        8. 8.5.1.8  Device Removable Configuration Register (offset = 7h) [reset = 0Xh]
        9. 8.5.1.9  Port Used Configuration Register (offset = 8h) [reset = 0h]
        10. 8.5.1.10 PHY Custom Configuration Register (offset = 9h) [reset = 0h]
        11. 8.5.1.11 Device Configuration Register 2 (offset = Ah)
        12. 8.5.1.12 UUID Registers (offset = 10h to 1Fh)
        13. 8.5.1.13 Language ID LSB Register (offset = 20h)
        14. 8.5.1.14 Language ID MSB Register (offset = 21h)
        15. 8.5.1.15 Serial Number String Length Register (offset = 22h)
        16. 8.5.1.16 Manufacturer String Length Register (offset = 23h)
        17. 8.5.1.17 Product String Length Register (offset = 24h)
        18. 8.5.1.18 Serial Number Registers (offset = 30h to 4Fh)
        19. 8.5.1.19 Manufacturer String Registers (offset = 50h to 8Fh)
        20. 8.5.1.20 Product String Registers (offset = 90h to CFh)
        21. 8.5.1.21 Additional Feature Configuration Register (offset = F0h)
        22. 8.5.1.22 Charging Port Control Register (offset = F2h)
        23. 8.5.1.23 Device Status and Command Register (offset = F8h)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Upstream Port Implementation
        2. 9.2.2.2 Downstream Port 1 Implementation
        3. 9.2.2.3 Downstream Port 2 Implementation
        4. 9.2.2.4 VBUS Power Switch Implementation
        5. 9.2.2.5 Clock, Reset, and Miscellaneous
        6. 9.2.2.6 Power Implementation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply
    2. 10.2 Downstream Port Power
    3. 10.3 Ground
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Placement
      2. 11.1.2 Package Specific
      3. 11.1.3 Differential Pairs
    2. 11.2 Layout Example
      1. 11.2.1 Upstream Port
      2. 11.2.2 Downstream Port
      3. 11.2.3 Thermal Pad
  12. 12器件和文档支持
    1. 12.1 社区资源
    2. 12.2 商标
    3. 12.3 静电放电警告
    4. 12.4 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Supply Recommendations

Power Supply

VDD should be implemented as a single power plane, as should VDD33.

  • The VDD terminals of the TUSB8020B supply 1.1-V (nominal) power to the core of the TUSB8020B. This power rail can be isolated from all other power rails by a ferrite bead to reduce noise.
  • The DC resistance of the ferrite bead on the core power rail can affect the voltage provided to the device due to the high current draw on the power rail. The output of the core voltage regulator may need to be adjusted to account for this or a ferrite bead with low DC resistance (less than 0.05 Ω) can be selected.
  • The VDD33 terminals of the TUSB8020B supply 3.3-V power rail to the I/O of the TUSB8020B. This power rail can be isolated from all other power rails by a ferrite bead to reduce noise.
  • All power rails require a 10-µF capacitor or 1-µF capacitors for stability and noise immunity. These bulk capacitors can be placed anywhere on the power rail. The smaller decoupling capacitors should be placed as close to the TUSB8020B power pins as possible with an optimal grouping of two of differing values per pin.

Downstream Port Power

  • The downstream port power, VBUS, must be supplied by a source capable of supplying 5 V and at least
    900 mA per port. Downstream port power switches can be controlled by the TUSB8020BPHP signals. It is possible to leave the downstream port power always enabled.
  • Each downstream port’s VBUS requires a large bulk low-ESR capacitor of 22 µF or larger to limit in-rush current.
  • TI recommends ferrite beads on the VBUS pins of the downstream USB port connections for both ESD and EMI reasons. A 0.1-µF capacitor on the USB connector side of the ferrite provides a low-impedance path to ground for fast rise time ESD current that might have coupled onto the VBUS trace from the cable.

Ground

TI recommends to use only one board ground plane in the design. This provides the best image plane for signal traces running above the plane. The thermal pad of the TUSB8020B and any of the voltage regulators should be connected to this plane with vias. An earth or chassis ground is only implemented near the USB port connectors on a different plane for EMI and ESD purposes.