ZHCSKP2A March   2020  – August 2024 UCC21320-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1  绝对最大额定值
    2. 5.2  ESD 等级(汽车类)
    3. 5.3  建议运行条件
    4. 5.4  热性能信息
    5. 5.5  功率等级
    6. 5.6  绝缘规格
    7. 5.7  安全限值
    8. 5.8  电气特性
    9. 5.9  时序要求
    10. 5.10 开关特性
    11. 5.11 绝缘特性曲线
    12. 5.12 典型特性
  7. 参数测量信息
    1. 6.1 传播延迟和脉宽失真度
    2. 6.2 上升至下降时间
    3. 6.3 输入和禁用响应时间
    4. 6.4 可编程死区时间
    5. 6.5 上电 UVLO 到输出延迟
    6. 6.6 CMTI 测试
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 VDD、VCCI 和欠压锁定 (UVLO)
      2. 7.3.2 输入和输出逻辑表
      3. 7.3.3 输入级
      4. 7.3.4 输出级
      5. 7.3.5 UCC21320 -Q1 中的二极管结构
    4. 7.4 器件功能模式
      1. 7.4.1 禁用引脚
      2. 7.4.2 可编程死区时间 (DT) 引脚
        1. 7.4.2.1 将 DT 引脚连接到 VCC
        2. 7.4.2.2 DT 引脚连接至 DT 和 GND 引脚之间的编程电阻器
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1 设计 INA/INB 输入滤波器
        2. 8.2.2.2 选择外部自举二极管及其串联电阻
        3. 8.2.2.3 栅极驱动器输出电阻器
        4. 8.2.2.4 栅极至源极电阻器选择
        5. 8.2.2.5 估算栅极驱动器功率损耗
        6. 8.2.2.6 估算结温
        7. 8.2.2.7 选择 VCCI、VDDA/B 电容器
          1. 8.2.2.7.1 选择 VCCI 电容器
          2. 8.2.2.7.2 选择 VDDA(自举)电容器
          3. 8.2.2.7.3 选择 VDDB 电容器
        8. 8.2.2.8 死区时间设置指南
        9. 8.2.2.9 具有输出级负偏置的应用电路
      3. 8.2.3 应用曲线
  10. 电源相关建议
  11. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
  12. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  13. 12修订历史记录
  14. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

概述

为了快速开关功率晶体管并减少开关功率损耗,通常会在控制器件的输出端和功率晶体管的栅极之间放置大电流栅极驱动器。在一些情况下,控制器无法提供足够的电流来驱动功率晶体管的栅极。在使用数字控制器的情况下尤其如此,因为来自数字控制器的输入信号通常是 3.3V 逻辑信号,只能提供几毫安的电流。

UCC21320-Q1 是一款灵活的双通道栅极驱动器,经过配置可支持各种不同的电源和电机驱动拓扑,以及用于驱动包括 SiC MOSFET 在内的多种类型的晶体管。UCC21320-Q1 具有很多特性,能够与控制电路良好集成并能够保护所驱动的栅极,这些特性包括:可通过电阻器编程的死区时间 (DT) 控制、DISABLE 引脚,以及输入和输出电压的欠压锁定 (UVLO)。当输入端保持开路时,或者输入脉宽不够时,UCC21320-Q1 也会将其输出保持为低电平。驱动器输入端与 CMOS 和 TTL 兼容,可连接数字和模拟电源控制器等。每条通道均由其各自的输入引脚(INA 和 INB)控制,因此允许完全独立地控制每个输出。