ZHCSGD6 July   2017 UCC27212A-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Stages
      2. 7.3.2 Undervoltage Lockout (UVLO)
      3. 7.3.3 Level Shift
      4. 7.3.4 Boot Diode
      5. 7.3.5 Output Stages
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Power Dissipation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Thermal Considerations
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VDD(2), VHB – VHS Supply voltage range –0.3 20 V
VLI, VHI Input voltages on LI and HI –10 20 V
VLO Output voltage on LO DC –0.3 VDD + 0.3 V
Repetitive pulse < 100 ns(3) –2 VDD + 0.3 V
VHO Output voltage on HO DC VHS – 0.3 VHB + 0.3 V
Repetitive pulse < 100 ns(3) VHS – 2 VHB + 0.3 V
VHS Voltage on HS DC –1 100 V
Repetitive pulse < 100 ns(3) –(24 V – VDD) 115 V
VHB Voltage on HB –0.3 120 V
TJ Operating virtual junction temperature range –40 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to VSS unless otherwise noted. Currents are positive into and negative out of the specified terminal.
Verified at bench characterization. VDD is the value used in an application design.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002 ±2000 V
Charged-device model (CDM), per AEC Q100-011 ±1500

Recommended Operating Conditions

over operating free-air temperature range, all voltages are with respect to VSS; currents are positive into and negative out of the specified terminal. –40°C < TJ = TA < 140°C (unless otherwise noted)
MIN NOM MAX UNIT
VDD Supply voltage range, VHB – VHS 7 12 17 V
VHS Voltage on HS –1 100 V
VHS Voltage on HS (repetitive pulse < 100 ns) –(20 V – VDD) 110 V
VHB Voltage on HB VHS + 8 115 V
Voltage slew rate on HS 50 V/ns
Operating junction temperature –40 140 °C

Thermal Information

THERMAL METRIC(1) UCC27212A-Q1 UNIT
DDA (SOIC8 Powerpad)
8 PINS
RθJA Junction-to-ambient thermal resistance 37.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 47.2 °C/W
RθJB Junction-to-board thermal resistance 9.6 °C/W
ψJT Junction-to-top characterization parameter 2.8 °C/W
ψJB Junction-to-board characterization parameter 9.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.6 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

over operating free-air temperature range, VHS = VSS = 0 V, no load on LO or HO, TA = TJ = –40°C to +140°C, (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENTS, VDD = VHB = 12 V
IDD VDD quiescent current V(LI) = V(HI) = 0 V 0.05 0.085 0.17 mA
IDDO VDD operating current f = 500 kHz, CLOAD = 0 2.1 2.5 6.5 mA
IHB Boot voltage quiescent current V(LI) = V(HI) = 0 V 0.015 0.065 0.1 mA
IHBO Boot voltage operating current f = 500 kHz, CLOAD = 0 1.5 2.5 5.1 mA
IHBS HB to VSS quiescent current V(HS) = V(HB) = 115 V 0.0005 1 µA
IHBSO HB to VSS operating current f = 500 kHz, CLOAD = 0 0.07 1.2 mA
SUPPLY CURRENTS, VDD = VHB = 6.8 V
IDD VDD quiescent current V(LI) = V(HI) = 0 V 0.02 0.065 0.14 mA
IDDO VDD operating current f = 500 kHz, CLOAD = 0 0.7 1.4 6.5 mA
IHB Boot voltage quiescent current V(LI) = V(HI) = 0 V 0.01 0.04 0.08 mA
IHBO Boot voltage operating current f = 500 kHz, CLOAD = 0 0.5 1.23 5.1 mA
IHBS HB to VSS quiescent current V(HS) = V(HB) = 115 V 0.0005 1 µA
IHBSO HB to VSS operating current f = 500 kHz, CLOAD = 0 0.07 1.2 mA
INPUT, VDD = VHB = 12 V
VHIT Input voltage threshold 1.7 2.3 2.55 V
VLIT Input voltage threshold 1.2 1.6 1.9 V
VIHYS Input voltage hysteresis 700 mV
RIN Input pulldown resistance 68
INPUT, VDD = VHB = 6.8 V
VHIT Input voltage threshold 1.6 2.0 2.6 V
VLIT Input voltage threshold 1.1 1.5 2.1 V
VIHYS Input voltage hysteresis 500 mV
RIN Input pulldown resistance 68
UNDER-VOLTAGE LOCKOUT (UVLO), VDD = VHB = 12 V
VDDR VDD turnon threshold 4.9 5.7 6.4 V
VDDHYS Hysteresis 0.4 V
VHBR VHB turnon threshold 4.35 5.3 6.3 V
VHBHYS Hysteresis 0.3 V
BOOTSTRAP DIODE, VDD = VHB = 12 V
VF Low-current forward voltage IVDD-HB = 100 µA 0.65 0.8 V
VFI High-current forward voltage IVDD-HB = 100 mA 0.85 0.95 V
RD Dynamic resistance, ΔVF/ΔI IVDD-HB = 100 mA and 80 mA 0.3 0.5 0.85 Ω
BOOTSTRAP DIODE, VDD = VHB = 6.8 V
VF Low-current forward voltage IVDD-HB = 100 µA 0.65 0.8 V
VFI High-current forward voltage IVDD-HB = 100 mA 0.85 0.95 V
RD Dynamic resistance, ΔVF/ΔI IVDD-HB = 100 mA and 80 mA 0.3 0.5 0.85 Ω
LO GATE DRIVER, VDD = VHB = 12 V
VLOL Low-level output voltage 0.05 0.1 0.19 V
VLOH High level output voltage 0.1 0.16 0.29 V
Peak pullup current(1) 3.7 A
Peak pulldown current (1) 4.5 A
LO GATE DRIVER, VDD = VHB = 6.8 V
VLOL Low-level output voltage ILO = 100 mA 0.04 0.13 0.35 V
VLOH High level output voltage ILO = –100 mA, VLOH = VDD – VLO 0.12 0.23 0.42 V
Peak pullup current VLO = 0 V 1.3 A
Peak pulldown current VLO = 12 V for VDD = 6.8V 1.7 A
HO GATE DRIVER, VDD = VHB = 12 V
VHOL Low-level output voltage 0.05 0.1 0.19 V
VHOH High-level output voltage 0.1 0.16 0.29 V
Peak pullup current (1) 3.7 A
Peak pulldown current (1) 4.5 A
HO GATE DRIVER, VDD = VHB = 6.8 V
VLOL Low-level output voltage IHO = 100 mA 0.04 0.13 0.35 V
VLOH High level output voltage IHO = –100 mA, VHOH = VHB – VHO 0.12 0.23 0.42 V
Peak pullup current VHO = 0 V 1.3 A
Peak pulldown current VHO = 12 V for VDD = 6.8V 1.7 A
Ensured by design.

Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PROPAGATION DELAYS, VDD = VHB = 12 V
TDLFF VLI falling to VLO falling CLOAD = 0 10 16 30 ns
TDHFF VHI falling to VHO falling CLOAD = 0 10 16 30 ns
TDLRR VLI rising to VLO rising CLOAD = 0 10 20 42 ns
TDHRR VHI rising to VHO rising CLOAD = 0 10 20 42 ns
PROPAGATION DELAYS, VDD = VHB = 6.8 V
TDLFF VLI falling to VLO falling CLOAD = 0 10 24 50 ns
TDHFF VHI falling to VHO falling CLOAD = 0 10 24 50 ns
TDLRR VLI rising to VLO rising CLOAD = 0 13 28 57 ns
TDHRR VHI rising to VHO rising CLOAD = 0 13 28 57 ns
DELAY MATCHING, VDD = VHB = 12 V
TMON From HO OFF to LO ON TJ = 25°C 4 9.5 ns
TJ = –40°C to +140°C 4 17 ns
TMOFF From LO OFF to HO ON TJ = 25°C 4 9.5 ns
TJ = –40°C to +140°C 4 17 ns
DELAY MATCHING, VDD = VHB = 6.8 V
TMON From HO OFF to LO ON TJ = 25°C 8 ns
TJ = –40°C to +140°C 8 18 ns
TMOFF From LO OFF to HO ON TJ = 25°C 6 ns
TJ = –40°C to +140°C 6 18 ns
OUTPUT RISE AND FALL TIME, VDD = VHB = 12 V
tR LO rise time CLOAD = 1000 pF, from 10% to 90% 7.8 ns
tR HO rise time CLOAD = 1000 pF, from 10% to 90% 7.8 ns
tF LO fall time CLOAD = 1000 pF, from 90% to 10% 6.0 ns
tF HO fall time CLOAD = 1000 pF, from 90% to 10% 6.0 ns
tR LO, HO CLOAD = 0.1 µF, (3 V to 9 V) 0.36 0.6 µs
tF LO, HO CLOAD = 0.1 µF, (9 V to 3 V) 0.20 0.4 µs
OUTPUT RISE AND FALL TIME, VDD = VHB = 6.8 V
tR LO rise time CLOAD = 1000 pF, from 10% to 90% 9.5 ns
tR HO rise time CLOAD = 1000 pF, from 10% to 90% 13.0 ns
tF LO fall time CLOAD = 1000 pF, from 90% to 10% 9.5 ns
tF HO fall time CLOAD = 1000 pF, from 90% to 10% 13.0 ns
tR LO, HO CLOAD = 0.1 µF, (30% to 70%) 0.45 0.7 µs
tF LO, HO CLOAD = 0.1 µF, (70% to 30%) 0.2 0.5 µs
MISCELLANEOUS
Minimum input pulse width that changes the output 100 ns
Bootstrap diode turnoff time (1)(2) IF = 20 mA, IREV = 0.5 A (3) 20 ns
Extended output pulse when VDD = VHB = 6.8 V, VHS = 100 V, and input pulse width is 100 ns 250 ns
Ensured by design.
IF: Forward current applied to bootstrap diode, IREV: Reverse current applied to bootstrap diode.
Typical values for TA = 25°C.
UCC27212A-Q1 timing_diagram_slusco1.gif Figure 1. Timing Diagram

Typical Characteristics

UCC27212A-Q1 0001_IDD_IHB_vs_VDD_VHB_lusat7.gif
T = 25°C
Figure 2. Quiescent Current vs Supply Voltage
UCC27212A-Q1 0003_UCC27211_IDDO_vs_Freq_lusat7.gif
VDD = 12 V
Figure 4. IDD Operating Current vs Frequency
UCC27212A-Q1 0005_VIHL_vs_VDD_lusat7.gif
T = 25°C
Figure 6. Input Threshold vs Supply Voltage
UCC27212A-Q1 0007_VOH_vs_Temp_lusat7.gif
IHO = ILO = 100 mA
Figure 8. LO and HO High-Level Output Voltage
vs Temperature
UCC27212A-Q1 0009_UVLO_vs_Temp_lusat7.png
Figure 10. Undervoltage Lockout Threshold
vs Temperature
UCC27212A-Q1 0011_UCC27210_Delay_vs_Temp_lusat7.gif
VDD = VHB = 12 V
Figure 12. Propagation Delays vs Temperature
UCC27212A-Q1 0013_UCC27210_Delay_vs_VDD_lusat7.gif
T = 25°C
Figure 14. Propagation Delays vs Supply Voltage
(VDD = VHB)
UCC27212A-Q1 0015_DelayMatching_vs_Temp_lusat7.gif
VDD = VHB = 12 V
Figure 16. Delay Matching vs Temperature
UCC27212A-Q1 0017_DiodeCurrent_vs_DiodeVoltage_lusat7.png
Figure 18. Diode Current vs Diode Voltage
UCC27212A-Q1 0002_UCC27210_IDDO_vs_Freq_lusat7.gif
VDD = 12 V
Figure 3. IDD Operating Current vs Frequency
UCC27212A-Q1 0004_IHBO_vs_Freq_lusat7.gif
VHB – VHS = 12 V
Figure 5. Boot Voltage Operating Current vs
Frequency (HB To HS)
UCC27212A-Q1 0006_VIHL_vs_Temp_lusat7.gif
VDD = 12 V
Figure 7. Input Thresholds vs Temperature
UCC27212A-Q1 0008_VOL_vs_Temp_lusat7.gif
IHO = ILO = 100 mA
Figure 9. LO and HO Low-Level Output Voltage
vs Temperature
UCC27212A-Q1 0010_UVLO_HYS_vs_Temp_lusat7.png
Figure 11. Undervoltage Lockout Threshold Hysteresis
vs Temperature
UCC27212A-Q1 0012_UCC27211_Delay_vs_Temp_lusat7.gif
VDD = VHB = 12 V
Figure 13. Propagation Delays vs Temperature
UCC27212A-Q1 0014_UCC27211_Delay_vs_VDD_lusat7.gif
T = 25°C
Figure 15. Propagation Delays vs Supply Voltage
(VDD = VHB)
UCC27212A-Q1 out_new_sluscg0.gif
VDD = VHB = 12 V
Figure 17. Output Current vs Output Voltage