ZHCSBE0C August   2013  – August 2015 UCC27517A

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明(续)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Switching Characteristics
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 VDD and Undervoltage Lockout
      2. 9.3.2 Operating Supply Current
      3. 9.3.3 Input Stage
      4. 9.3.4 Enable Function
      5. 9.3.5 Output Stage
      6. 9.3.6 Low Propagation Delays
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Input-to-Output Logic
        2. 10.2.2.2 Input Threshold Type
        3. 10.2.2.3 VDD Bias Supply Voltage
        4. 10.2.2.4 Peak Source and Sink Currents
        5. 10.2.2.5 Enable and Disable Runction
        6. 10.2.2.6 Propagation Delay
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
    4. 12.4 Power Dissipation
  13. 13器件和文档支持
    1. 13.1 社区资源
    2. 13.2 商标
    3. 13.3 静电放电警告
    4. 13.4 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
Supply voltage VDD –0.3 20 V
OUT voltage DC –0.3 VDD + 0.3 V
Repetitive pulse less than 200 ns(5) –2 VDD + 0.3
Output continuous current IOUT_DC (source/sink) 0.3 A
Output pulsed current (0.5 µs) IOUT_pulsed(source/sink) 4
Input voltage IN+, IN-(4) –6 20 V
Operating virtual junction temperature, TJ –40 150 °C
Lead temperature Soldering, 10 sec. 300 °C
Reflow 260
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND unless otherwise noted. Currents are positive into, negative out of the specified terminal. See Packaging Section of the datasheet for thermal limitations and considerations of packages.
(3) These devices are sensitive to electrostatic discharge; follow proper device-handling procedures.
(4) Maximum voltage on input pins is not restricted by the voltage on the VDD pin.
(5) Values are verified by characterization on bench.

8.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
Supply voltage, VDD 4.5 12 18 V
Operating junction temperature –40 140 °C
Input voltage, IN+ and IN- 0 18 V

8.4 Thermal Information

THERMAL METRIC(1)(2) UCC27517A UNIT
DBV (SOT-23)
5 PINS
RθJA Junction-to-ambient thermal resistance 217.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 85.8 °C/W
RθJB Junction-to-board thermal resistance 44 °C/W
ψJT Junction-to-top characterization parameter 4 °C/W
ψJB Junction-to-board characterization parameter 43.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Under identical power dissipation conditions, the DRS package will allow to maintain a lower die temperature than the DBV. θJA metric should be used for comparison of power dissipation capability between different packages (Refer to the Application Information section).

8.5 Electrical Characteristics

VDD = 12 V, TA = TJ = –40°C to 140°C, 1-µF capacitor from VDD to GND. Currents are positive into, negative out of the specified terminal.
PARAMETER TEST CONDITION MIN TYP MAX UNIT
BIAS CURRENTS
IDD(off) Startup current VDD = 3.4 V IN+ = VDD, IN- = GND 40 100 160 µA
IN+ = IN- = GND or IN+ = IN- = VDD 25 75 145
IN+ = GND, IN- = VDD 20 60 115
UNDER VOLTAGE LOCKOUT (UVLO)
VON Supply start threshold TA = 25°C 3.91 4.20 4.5 V
TA = -40°C to 140°C 3.70 4.20 4.65
VOFF Minimum operating voltage after supply start 3.45 3.9 4.35 V
VDD_H Supply voltage hysteresis 0.2 0.3 0.5 V
INPUTS (IN+, IN-)
VIN_H Input signal high threshold Output high for IN+ pin, Output low for IN- pin 2.2 2.4 V
VIN_L Input signal low threshold Output low for IN+ pin, Output high for IN- pin 1.0 1.2 V
VIN_HYS Input signal hysteresis 1.0 V
SOURCE/SINK CURRENT
ISRC/SNK Source/sink peak current(1) CLOAD = 0.22 µF, FSW = 1 kHz ±4 A
OUTPUTS (OUT)
VDD-VOH High output voltage VDD = 12 V
IOUT = -10 mA
50 90 mV
VDD = 4.5 V
IOUT = -10 mA
60 130
VOL Low output voltage VDD = 12
IOUT = 10 mA
5 10 mV
VDD = 4.5 V
IOUT = 10 mA
6 12
ROH Output pullup resistance(2) VDD = 12 V
IOUT = -10 mA
5.0 7.5 Ω
VDD = 4.5 V
IOUT = -10 mA
5.0 11.0
ROL Output pulldown resistance VDD = 12 V
IOUT = 10 mA
0.5 1.0 Ω
VDD = 4.5 V
IOUT = 10 mA
0.6 1.2
(1) Ensured by Design.
(2) ROH represents on-resistance of P-Channel MOSFET in pull-up structure of the UCC27517A's output stage.

8.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tR Rise time(1) VDD = 12 V
CLOAD = 1.8 nF
8 12 ns
VDD = 4.5 V
CLOAD = 1.8 nF
16 22
tF Fall time(1) VDD = 12 V
CLOAD = 1.8 nF
7 11 ns
VDD=4.5V
CLOAD = 1.8 nF
7 11
tD1 IN+ to output propagation delay(1) VDD = 12 V
5-V input pulse CLOAD = 1.8 nF
4 13 23 ns
VDD = 4.5 V
5-V input pulse CLOAD = 1.8 nF
4 13 26
tD2 IN- to output propagation delay(1) VDD = 12 V
CLOAD = 1.8 nF
4 13 23 ns
VDD = 4.5 V
CLOAD = 1.8 nF
4 19 30
(1) See timing diagrams in Figure 1, Figure 2, Figure 3 and Figure 4.
UCC27517A time1_lusaw9.gif Figure 1. Non-Inverting Configuration
(PWM Input to IN+ pin (IN- pin tied to GND))
UCC27517A time3_lusaw9.gif Figure 3. Enable and Disable Function Using IN+ Pin
(Enable and disable signal applied to IN+ pin, PWM input to IN- pin)
UCC27517A time2_lusaw9.gif Figure 2. Inverting Configuration
(PWM input to IN- pin (IN+ pin tied to VDD))
UCC27517A time4_lusaw9.gif Figure 4. Enable and Disable Function Using IN- Pin
(Enable and disable signal applied to IN- pin, PWM input to IN+ pin)

8.7 Typical Characteristics

UCC27517A G001_Startup Current_lusaw9.png
Figure 5. Start-Up Current vs Temperature
UCC27517A G002_Operating Supply Current_lusaw9.png
Figure 7. Supply Current vs Temperature (Output in DC ON/OFF Condition)
UCC27517A G014_Input_Threshold_lusaw9.png
Figure 9. Input Threshold vs Temperature
UCC27517A fig11_lusay4.png
Figure 11. Output Pulldown Resistance vs Temperature
UCC27517A G016_Fall Time_temp_lusaw9.png
Figure 13. Fall Time vs Temperature
UCC27517A G010_IDD_frequency_lusaw9.png
Figure 15. Operating Supply Current vs Frequency
UCC27517A G008_Rise Time_lusaw9.png
Figure 17. Rise Time vs Supply Voltage
UCC27517A G013_Idd_500kHz_lusaw9.png
Figure 6. Operating Supply Current vs Temperature (Output Switching)
UCC27517A G003_UVLO_lusaw9.png
Figure 8. UVLO Threshold Voltage vs Temperature
UCC27517A G004_Pull-Up Resistance_lusaw9.png
Figure 10. Output Pullup Resistance vs Temperature
UCC27517A G015_Rise Time_temp_lusaw9.png
Figure 12. Rise Time vs Temperature
UCC27517A G006_Propagation Delay_lusaw9.png
Figure 14. Input to Output Propagation Delay vs Temperature
UCC27517A G007_Propagation Delay_VDD_lusaw9.png
Figure 16. Propagation Delays vs Supply Voltage
UCC27517A G009_Fall Time_lusaw9.png
Figure 18. Fall Time vs Supply Voltage