ZHCSCD4B July   2013  – August 2014 UCC28910

PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 简化电路原理图 简化电路原理图
  5. 修订历史记录
  6. Terminal Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Output Power
    6. 7.6 Electrical Characteristics
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Detailed Device Description
      1. 8.3.1 VDD (Device Voltage Supply)
      2. 8.3.2 GND (Ground)
      3. 8.3.3 VS (Voltage Sense)
      4. 8.3.4 IPK (Set the Maximum DRAIN Current Peak)
      5. 8.3.5 DRAIN
    4. 8.4 Feature Description
      1. 8.4.1 Primary-Side Voltage Regulation
      2. 8.4.2 Primary-Side Current Regulation
      3. 8.4.3 Voltage Feed Forward Compensation
      4. 8.4.4 Control Law
      5. 8.4.5 Valley Switching
      6. 8.4.6 Startup Operation
      7. 8.4.7 Fault Protection
        1. 8.4.7.1 Output Over-Voltage
        2. 8.4.7.2 Input Under-Voltage
        3. 8.4.7.3 Internal Over-Temperature
        4. 8.4.7.4 Primary Over-Current
        5. 8.4.7.5 Maximum tON
        6. 8.4.7.6 VDD Clamp Over-Current
    5. 8.5 Device Functional Modes
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Battery Charger, 5 V, 6 W
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Power Handling Curves
          2. 9.2.1.2.2  Definition of Terms
          3. 9.2.1.2.3  Maximum Target Switching Frequency
          4. 9.2.1.2.4  Transformer Turns Ratio, Inductance, Primary-Peak Current
          5. 9.2.1.2.5  Bulk Capacitance
          6. 9.2.1.2.6  Output Capacitance
          7. 9.2.1.2.7  VDD Capacitance, CVDD
          8. 9.2.1.2.8  VS Resistor Divider
          9. 9.2.1.2.9  RVDD Resistor and Turn Ratio
          10. 9.2.1.2.10 Transformer Input Power
          11. 9.2.1.2.11 RIPK Value
          12. 9.2.1.2.12 Primary Inductance Value
            1. 9.2.1.2.12.1 Secondary Diode Selection
          13. 9.2.1.2.13 Pre-Load
          14. 9.2.1.2.14 DRAIN Voltage Clamp Circuit
        3. 9.2.1.3 Application Curves
        4. 9.2.1.4 Average Efficiency Performance and Standby Power of the UCC28910FBEVM-526
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 商标
    3. 12.3 静电放电警告
    4. 12.4 术语表
  13. 13机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range, TA = 25°C (unless otherwise noted) (1)(2)
MIN MAX UNIT
VDRAIN DRAIN voltage Internally limited(3) 700 V
IDRAIN Negative drain current –100 mA
VDD Supply voltage Internally limited(3) V
IVDD(clp) Maximum VDD clamp current 10 mA
VVS Voltage range Internally limited(3) 7 V
VIPK Voltage range −0.5 5.0 V
IVS Peak vs terminal current (current out of the terminal) 1.2 mA
IDRAIN Drained pulsed drain current(4) 950 mA
TJ Operating junction temperature range −55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal. These ratings apply over the operating ambient temperature ranges unless otherwise noted.
(3) Do not drive with low impedance voltage source.
(4) Maximum pulse length = 100 μs.

7.2 Handling Ratings

MIN MAX UNIT
TSTG Storage temperature range −65 150 °C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds 260 °C
VESD(1) Human Body Model (HBM)(2) −2000 2000 V
Charged Device Model (CDM)(2) −500 500 V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges into the device.
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions(1)(2)

over operating free-air temperature range (unless otherwise noted) VVDD = 15 V, TA = -40°C to 125°C, TA = TJ
MIN NOM MAX UNIT
VVDD 6 VVDD(clp) V
IVS 1 mA
ID(peak_max) 600 mA
TJ Operating junction temperature -40 125 °C
(1) Unless otherwise noted, all voltages are with respect to GND.
(2) In case of thermal shut down, if TA > 100°C, the device does not restart because of the TJ(hys)Electrical Characteristics.

7.4 Thermal Information

THERMAL METRIC(1) UCC28910 UNITS
D
7 TERMINAL
θJA Junction-to-ambient thermal resistance 102.2 °C/W
θJCtop Junction-to-case (top) thermal resistance 39.1
θJB Junction-to-board thermal resistance 54.7
ψJT Junction-to-top characterization parameter 5.4
ψJB Junction-to-board characterization parameter 54.7
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Output Power

PART NUMBER 175 VAC TO 265 VAC 90 VAC TO 265 VAC UNIT
ADAPTER (1) OPEN FRAME (2) ADAPTER (1) OPEN FRAME (2)
UCC28910 10 12 6 7.5 W
(1) Typical continuous power in enclosed adapter at 50°C ambient, with adequate (560 mm2, 2 oz.) copper area connected on GND pins.
(2) Maximum continuous power with open frame design at 50°C ambient, with adequate copper area connected on GND pins and/or adequate air flow to have 50°C/W as RTHJA.

7.6 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted), VVDD = 15 V, TA = -40°C to 125°C, TA = TJ
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY INPUT
IRUN Supply current, run VVDD = 15 V, VVS = 3.9 V, fSW = fSW(max) 2.3 2.9 3.4 mA
IRUNQ Quiescent supply current VVDD = 15 V, VVS = 3.9 V, fSW = 0 Hz 1.90 2.35 2.80 mA
IWAIT Wait supply current VVDD= 15 V, VVS = 4.1 V, fSW = fSW(min) 150 270 370 µA
IWAITQ Quiescent wait supply current VVDD = 15 V, VVS = 4.1 V, fSW = 0 Hz 150 200 280 µA
ISTART Supply current before start VVDD from 0 V to 5.6 V, VDRAIN = 0 V 65 90 µA
IFAULT Supply current after fault VVDD = 15 V, fSW = 0 Hz 190 260 µA
UNDER-VOLTAGE LOCKOUT
VDDON VDD turn-on threshold VVDD low to high 9.0 9.5 10.0 V
VDDOFF VDD turn-off threshold VVDD high to low 6.0 6.5 7.0 V
VDDHV(on) HV current source start VVDD high to low 4.8 5.2 5.6 V
ΔVUVLO UVLO hysteresis VDDON – VDDOFF 2.8 3.0 3.2 V
STARTUP CURRENT SOURCE
ICH1 Startup current with VDD shorted to GND VVDD < 250 mV, VDRAIN = 100 V –300 –100 µA
ICH2 Sourced current for startup at high VDD VVDD = 8 V, VDRAIN = 100 V –9.75 –0.40 mA
ICH3 Sourced current for startup at low VDD VVDD = 2 V, VDRAIN = 100 V –13.75 –1.30 mA
VS INPUT
VVSR Regulating level Measured in no load condition,
TJ = 25°C
4.01 4.05 4.09 V
VVSNC Negative clamp level IVS = –300 μA, –190 –250 –325 mV
IVS Input bias current VVS = 4 V –0.25 0.00 0.25 µA
PROTECTION
IDOCP DRAIN over current IPK terminal shorted to GND 0.725 0.850 0.925 A
VCSTE_OCP Equivalent VCST(OCP) VVS = 3.9 V, ID(ocp) x RIPK 670 770 830 V
VCSTE_OCP2 Equivalent VCST(OCP2) VVS = 3.9 V, ID(ocp2) x RIPK 1200 V
tONMAX(max) Maximum FET on time at high load VVS < 3.9 V, IPK shorted to GND 13 18 24 µs
tONMAX(min) Maximum FET on time at low load VVS > 4.1 V, IPK shorted to GND 4.3 6 10 µs
VOVP Over-voltage threshold At VS input, TJ = 25°C 4.45 4.60 4.75 V
IVSLRUN VS line sense run current Current out of VS terminal – increasing 175 215 260 µA
IVSLSTOP VS line sense stop current Current out of VS terminal – decreasing 60 75 100 µA
KVSL Line sense IVS ratio IVSL(run) / IVSL(stop) 2.55 2.70 2.90 A/A
VDDCLP VDD voltage clamp IVDDCLP forced = 2 mA 26 28 30 V
IVDDCLP_OC VDD clamp over current VVDD > 25 V 4.65 6.00 7.65 mA
TJ(stop) Thermal shutdown temperature Internal junction temperature 150 °C
TJ(hys) Thermal shutdown hysteresis Internal junction temperature 50 °C
POWER FET
BVDSS Break-down voltage TJ = 25°C 700 V
RDS(on) Power FET on resistance ID = 150 mA, TJ = 25°C 10.5 12.0 Ω
ID = 150 mA, TJ = 125°C 18.4 21.5 Ω
ILEAKAGE DRAIN terminal leakage current VDS = 400 V HV, VS = 4.2 V DC
TJ = 25°C
10 µA
VDS = 400 V HV, VS = 4.2 V DC
TJ = 125°C
20 µA
VDS = 700 V HV, VS = 4.2 V DC
TJ = 25°C
10 µA
CURRENTS
ID_PEAK(max) Maximum DRAIN peak current VVDD = 15 V, IPK terminal shorted to GND, TJ = 25°C 582 600 618 mA
RIPK_SHORT IPK to GND resistance Max to assume IPK shorted to GND VVDD = 15 V 200 Ω
RIPK(min) IPK to GND minimum resistance VVDD = 15 V 900 Ω
VCSTE(max) Equivalent current sense threshold VVDD = 15 V, VVS = 3.9 V, ID_PK(max) × RIPK , TJ = 25°C 532 540 548 V
VCSTE(min) Equivalent current sense threshold VVDD = 15 V, VVS = 4.1 V, ID_PK(min) × RIPK 160 180 200 V
KAM AM control ratio VCSE(max) / VCSE(min) 2.30 3.00 3.50 V/V
KCC CC regulation gain VVDD = 15 V, VVS > 3.9 V; tDEMAG × fSW 0.413
VCCR CC regulation constant VVDD = 15 V, VVS < 3.9 V, VCSET(max) × KCC, TJ = 25°C 216 223 230 V

7.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TIMING
fSW(max) Maximum switching frequency VVS < 3.9 V 105 115 125 kHz
fSW(min) Minimum switching frequency VVS > 4.1 V 360 420 490 Hz
tZTO Zero crossing timeout delay VVS < 3.9 V 1.80 2.10 2.65 µs
tON(min) Minimum on time IPK = 0.85 V 390 ns

7.8 Typical Characteristics

Unless otherwise specified, VVDD = 15 V, TA = –40°C to 125°C, TA = TJ
C001_SLUS769.png
Figure 1. ID_PEAK(max) vs Temperature
C003_SLUS769.png
Figure 3. VCSTE(max) vs Temperature
C005_SLUS769.png
Figure 5. fSW(max) vs Temperature
C007_SLUS769.png
Figure 7. tZTO vs Temperature
C009_SLUS769.png
Figure 9. Regulation Voltage vs Temperature
C011_SLUS769.png
Figure 11. HV Current Source Currents
C002_SLUS769.png
Figure 2. Drain Current vs Drain Voltage
C004_SLUS769.png
Figure 4. VCSTE(min) vs Temperature
C006_SLUS769.png
Figure 6. fSW(min) vs Temperature
C021_SLUS769.png
Figure 8. VCSTE(min) vs Temperature
C010_SLUS769.png
Figure 10. Over Voltage vs Temperature
C012_SLUS769.png
Figure 12. VS Line Sense Current vs Temperature