SLUS161F April   1999  – May 2020 UCC2813-0 , UCC2813-1 , UCC2813-2 , UCC2813-3 , UCC2813-4 , UCC2813-5 , UCC3813-0 , UCC3813-1 , UCC3813-2 , UCC3813-3 , UCC3813-4 , UCC3813-5

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Block Diagram
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Detailed Pin Descriptions
        1. 8.3.1.1 COMP
        2. 8.3.1.2 CS
        3. 8.3.1.3 FB
        4. 8.3.1.4 GND
        5. 8.3.1.5 OUT
        6. 8.3.1.6 RC
        7. 8.3.1.7 REF
        8. 8.3.1.8 VCC
      2. 8.3.2  Undervoltage Lockout (UVLO)
      3. 8.3.3  Self-Biasing, Active Low Output
      4. 8.3.4  Reference Voltage
      5. 8.3.5  Oscillator
      6. 8.3.6  Synchronization
      7. 8.3.7  PWM Generator
      8. 8.3.8  Minimum Off-Time Adjustment (Dead-Time Control)
      9. 8.3.9  Leading Edge Blanking
      10. 8.3.10 Minimum Pulse Width
      11. 8.3.11 Current Limiting
      12. 8.3.12 Overcurrent Protection and Full-Cycle Restart
      13. 8.3.13 Soft Start
      14. 8.3.14 Slope Compensation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 UVLO Mode
      3. 8.4.3 Soft-Start Mode
      4. 8.4.4 Fault Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Bulk Capacitor Calculation
        2. 9.2.2.2  Transformer Design
        3. 9.2.2.3  MOSFET and Output Diode Selection
        4. 9.2.2.4  Output Capacitor Calculation
        5. 9.2.2.5  Current Sensing Network
        6. 9.2.2.6  Gate Drive Resistor
        7. 9.2.2.7  REF Bypass Capacitor
        8. 9.2.2.8  RT and CT
        9. 9.2.2.9  Start-Up Circuit
        10. 9.2.2.10 Voltage Feedback Compensation Procedure
          1. 9.2.2.10.1 Power Stage Gain, Zeroes, and Poles
          2. 9.2.2.10.2 Compensating the Loop
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|8
  • PW|8
散热焊盘机械数据 (封装 | 引脚)
订购信息

VCC

VCC is the power input connection for this device. In normal operation, VCC is powered through a current limiting resistor to a low-impedance source. To prevent noise problems, bypass VCC to GND with a 0.1-µF ceramic capacitor in parallel as close to the VCC pin as possible. An electrolytic capacitor can also be used in addition to the ceramic capacitor.

Although quiescent VCC current is very low, total supply current is higher, depending on the OUT current. Total VCC current is the sum of quiescent VCC current and the average OUT current. Knowing the switching frequency f and the MOSFET gate charge (Qg), average OUT current can be calculated from Equation 3.

Equation 3. UCC2813-0 UCC2813-1 UCC2813-2 UCC2813-3 UCC2813-4 UCC2813-5 UCC3813-0 UCC3813-1 UCC3813-2 UCC3813-3 UCC3813-4 UCC3813-5 Equation_03_SLUS270E.gif

The UCCx813-x has a lower VCC (supply voltage) clamp of 13.5 V typical versus 30 V on the UC3842. For applications that require a higher VCC voltage, a resistor must be placed in series with VCC to increase the source impedance. The maximum value of this resistor is calculated with Equation 4.

Equation 4. UCC2813-0 UCC2813-1 UCC2813-2 UCC2813-3 UCC2813-4 UCC2813-5 UCC3813-0 UCC3813-1 UCC3813-2 UCC3813-3 UCC3813-4 UCC3813-5 Eq_Rmax_SLUS270.gif

where

  • VIN(min) is the minimum voltage that is used to supply VCC
  • VVCC(max) is the maximum VCC clamp voltage of the controller
  • IVCC is the IC supply current without considering the gate driver current
  • Qg is the external power MOSFET gate charge, and f is the switching frequency

Additionally, the UCCx813-x has an on-chip Zener diode to limit VCC to 13.5 V, which also limits the maximum OUT voltage. If the bias-supply source is always lower than 12 V, it may be connected directly to VCC. With UVLO thresholds at 4.1 V and 3.6 V for the UCCx813-3 and UCCx813-5, respectively, 5-V PWM operation is now possible.