ZHCSKG7B June   2019  – February 2024 UCC5390-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Function
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications for DWV Package
    7. 5.7  Safety-Related Certifications For DWV Package
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics
    10. 5.10 Switching Characteristics
    11. 5.11 Insulation Characteristics Curves
    12. 5.12 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Propagation Delay, Inverting, and Noninverting Configuration
      1. 6.1.1 CMTI Testing
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Supply
      2. 7.3.2 Input Stage
      3. 7.3.3 Output Stage
      4. 7.3.4 Protection Features
        1. 7.3.4.1 Undervoltage Lockout (UVLO)
        2. 7.3.4.2 Active Pulldown
        3. 7.3.4.3 Short-Circuit Clamping
    4. 7.4 Device Functional Modes
      1. 7.4.1 ESD Structure
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Designing IN+ and IN– Input Filter
        2. 8.2.2.2 Gate-Driver Output Resistor
        3. 8.2.2.3 Estimate Gate-Driver Power Loss
        4. 8.2.2.4 Estimating Junction Temperature
      3. 8.2.3 Selecting VCC1 and VCC2 Capacitors
        1. 8.2.3.1 Selecting a VCC1 Capacitor
        2. 8.2.3.2 Selecting a VCC2 Capacitor
        3. 8.2.3.3 Application Circuits With Output Stage Negative Bias
      4. 8.2.4 Application Curve
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 PCB Material
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Certifications
    4. 11.4 接收文档更新通知
    5. 11.5 支持资源
    6. 11.6 Trademarks
    7. 11.7 静电放电警告
    8. 11.8 术语表
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Undervoltage Lockout (UVLO)

UVLO functions are implemented for both the VCC1 and VCC2 supplies between the VCC1 and GND1, and VCC2 and VEE2 pins to prevent an underdriven condition on IGBTs and MOSFETs. When VCC is lower than VIT+ (UVLO) at device start-up or lower than VIT–(UVLO) after start-up, the voltage-supply UVLO feature holds the effected output low, regardless of the input pins (IN+ and IN–) as shown in Table 7-2. The VCC UVLO protection has a hysteresis feature (Vhys(UVLO)). This hysteresis prevents chatter when the power supply produces ground noise; this allows the device to permit small drops in bias voltage, which occurs when the device starts switching and operating current consumption increases suddenly. Figure 7-5 shows the UVLO functions.

Table 7-2 UCC5390-Q1 VCC1 UVLO Logic
CONDITIONINPUTSOUTPUT
IN+IN–OUT
VCC1 – GND1 < VIT+(UVLO1) during device start-upHLL
LHL
HHL
LLL
VCC1 – GND1 < VIT–(UVLO1) after device start-upHLL
LHL
HHL
LLL
Table 7-3 UCC5390-Q1 VCC2 UVLO Logic
CONDITIONINPUTSOUTPUT
IN+IN–OUT
VCC2 – VEE2 < VIT+(UVLO2) during device start-upHLL
LHL
HHL
LLL
VCC2 – VEE2 < VIT–(UVLO2) after device start-upHLL
LHL
HHL
LLL

When VCC1 or VCC2 drops below the UVLO1 or UVLO2 threshold, a delay, tUVLO1_rec or tUVLO2_rec, occurs on the output when the supply voltage rises above VIT+(UVLO) or VIT+(UVLO2) again. Figure 7-5 shows this delay.

GUID-321290E4-9770-41D2-864E-2E6E36B6C4CD-low.gif Figure 7-5 UVLO Functions