SBOA615 November   2024 INA180 , INA180-Q1 , INA181 , INA181-Q1 , INA183 , INA185 , INA185-Q1 , INA186 , INA186-Q1 , INA190 , INA190-EP , INA190-Q1 , INA191 , INA199 , INA199-Q1 , INA209 , INA210 , INA210-Q1 , INA211 , INA211-Q1 , INA212 , INA212-Q1 , INA213 , INA213-Q1 , INA214 , INA214-Q1 , INA215 , INA215-Q1 , INA216 , INA2180 , INA2180-Q1 , INA2181 , INA2181-Q1 , INA219 , INA2191 , INA220 , INA220-Q1 , INA223 , INA225 , INA225-Q1 , INA226 , INA226-Q1 , INA228 , INA228-Q1 , INA229 , INA229-Q1 , INA2290 , INA230 , INA231 , INA232 , INA233 , INA234 , INA236 , INA237 , INA237-Q1 , INA238 , INA238-Q1 , INA239 , INA239-Q1 , INA240 , INA240-Q1 , INA241A , INA241A-Q1 , INA241B , INA241B-Q1 , INA250 , INA250-Q1 , INA253 , INA253-Q1 , INA254 , INA260 , INA280 , INA280-Q1 , INA281 , INA281-Q1 , INA290 , INA290-Q1 , INA293 , INA293-Q1 , INA296A , INA296A-Q1 , INA296B , INA296B-Q1 , INA300 , INA300-Q1 , INA301 , INA301-Q1 , INA302 , INA302-Q1 , INA303 , INA303-Q1 , INA310A , INA310A-Q1 , INA310B , INA310B-Q1 , INA3221 , INA3221-Q1 , INA381 , INA381-Q1 , INA4180 , INA4180-Q1 , INA4181 , INA4181-Q1 , INA4230 , INA4235 , INA4290 , INA700 , INA740A , INA740B , INA745A , INA745B , INA780A , INA780B , INA790B , INA791B , LMP8278Q-Q1 , LMP8601 , LMP8601-Q1 , LMP8602 , LMP8602-Q1 , LMP8603 , LMP8603-Q1 , LMP8640 , LMP8640-Q1 , LMP8640HV

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2What is ESD, EOS, and Latch Up?
    1. 2.1 Electrical Overstress
    2. 2.2 Electrical Static Discharge
    3. 2.3 Latch Ups
  6. 3Risky Applications for Current Sense Amplifiers
    1. 3.1 Applications with Over Voltage Transient Surges (EOS)
    2. 3.2 Pulse Width Modulated Current Sensing Risks
    3. 3.3 Applications with Significant Electromagnetic Interference
      1. 3.3.1 Layout Best Practices for Reducing EMI Induced Latch Up or Noise
        1. 3.3.1.1 Techniques for Proper Grounding and Decoupling Capacitance
        2. 3.3.1.2 Additional and Advanced Layout Techniques
        3. 3.3.1.3 Proper Input Filtering Layout Techniques for Noise Reduction
    4. 3.4 Applications that Float the Supply (VS or GND) Pins of CSA
  7. 4Summary
  8. 5References

Additional and Advanced Layout Techniques

For the most part, the basic layout techniques mentioned above are going to negate risks from EMI induced latch up at VS; however, for excessive noise coupling is always good to follow these additional layout techniques as much as possible to reduce noise into signal.

  1. Use shortest and widest possible traces for input pins.
  2. Use multiple vias (or larger vias for plane connections).
    1. Use thinner dielectric spacing between top layer and plane to reduce via inductance.
    2. Adding more capacitors in parallel can reduce ESL and improve filtering; however, for best practice, the capacitors are all the same value as most ceramic capacitors (of a single size) manufactured today can have the same impedance regardless of the specified capacitance. Thus, trying to use multiple capacitors of differing capacitance in parallel can create unpredictable resonances.
  3. Use LC or PI filters at VS pin to further attenuate noise.
  4. Shield or guard sensitive traces with ground traces or pours and vias to create vertical shield walls.