SCAS862G November   2008  – July 2016 CDCE62005

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Thermal Information
    4. 6.4 Electrical Characteristics
    5. 6.5 Timing Requirements
    6. 6.6 SPI Bus Timing Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
      1. 8.2.1 Interface and Control Block
      2. 8.2.2 Input Block
      3. 8.2.3 Output Block
      4. 8.2.4 Clock Divider Module 0-4
      5. 8.2.5 Synthesizer Block
      6. 8.2.6 Computing The Output Frequency
    3. 8.3 Feature Description
      1. 8.3.1  Phase Noise Analysis
      2. 8.3.2  Output To Output Isolation
      3. 8.3.3  Device Control
      4. 8.3.4  External Control Pins
      5. 8.3.5  Input Block
        1. 8.3.5.1  Universal Input Buffers (UIB)
        2. 8.3.5.2  LVDS Fail Safe Mode
        3. 8.3.5.3  Smart Multiplexer Controls
        4. 8.3.5.4  Smart Multiplexer Auto Mode
        5. 8.3.5.5  Smart Multiplexer Dividers
        6. 8.3.5.6  Output Block
        7. 8.3.5.7  Output Multiplexer Control
        8. 8.3.5.8  Output Buffer Control
        9. 8.3.5.9  Output Buffer Control - LVCMOS Configurations
        10. 8.3.5.10 Output Dividers
        11. 8.3.5.11 Digital Phase Adjust
        12. 8.3.5.12 Phase Adjust Example
        13. 8.3.5.13 Valid Register Settings for Digital Phase Adjust Blocks
        14. 8.3.5.14 Output Synchronization
        15. 8.3.5.15 Auxiliary Output
        16. 8.3.5.16 Synthesizer Block
        17. 8.3.5.17 Input Divider
        18. 8.3.5.18 Feedback and Feedback Bypass Divider
          1. 8.3.5.18.1 VCO Select
          2. 8.3.5.18.2 Prescaler
          3. 8.3.5.18.3 Charge Pump Current Settings
          4. 8.3.5.18.4 Loop Filter
        19. 8.3.5.19 Internal Loop Filter Component Configuration
        20. 8.3.5.20 External Loop Filter Component Configuration
      6. 8.3.6  Digital Lock Detect
      7. 8.3.7  Crystal Input Interference
      8. 8.3.8  VCO Calibration
      9. 8.3.9  Startup Time Estimation
      10. 8.3.10 Analog Lock Detect
    4. 8.4 Device Functional Modes
      1. 8.4.1 Fan-Out Buffer
      2. 8.4.2 Clock Generator
      3. 8.4.3 Jitter Cleaner - Mixed Mode
        1. 8.4.3.1 Clocking ADCs with the CDCE62005
        2. 8.4.3.2 CDCE62005 SERDES Startup Mode
    5. 8.5 Programming
      1. 8.5.1 Interface and Control Block
        1. 8.5.1.1 Serial Peripheral Interface (SPI)
        2. 8.5.1.2 CDCE62005 SPI Command Structure
        3. 8.5.1.3 SPI Interface Master
        4. 8.5.1.4 SPI Consecutive Read/Write Cycles to the CDCE62005
        5. 8.5.1.5 Writing to the CDCE62005
        6. 8.5.1.6 Reading from the CDCE62005
        7. 8.5.1.7 Writing to EEPROM
      2. 8.5.2 Device Configuration
    6. 8.6 Register Maps
      1. 8.6.1 Device Registers: Register 0 Address 0x00
      2. 8.6.2 Device Registers: Register 1 Address 0x01
      3. 8.6.3 Device Registers: Register 2 Address 0x02
      4. 8.6.4 Device Registers: Register 3 Address 0x03
      5. 8.6.5 Device Registers: Register 4 Address 0x04
      6. 8.6.6 Device Registers: Register 5 Address 0x05
      7. 8.6.7 Device Registers: Register 6 Address 0x06
      8. 8.6.8 Device Registers: Register 7 Address 0x07
      9. 8.6.9 Device Registers: Register 8 Address 0x08
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Frequency Synthesizer
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Documentation Support
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage range(2) –0.5 4.6 V
VI Input voltage range(3) –0.5 VCC + 0.5 V
VO Output voltage range(3) –0.5 VCC + 0.5 V
Input Current (VI < 0, VI > VCC) ±20 mA
Output current for LVPECL/LVCMOS Outputs (0 < VO < VCC) ±50 mA
TJ Junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) All supply voltages have to be supplied simultaneously.
(3) The input and output negative voltage ratings may be exceeded if the input and output clamp–current ratings are observed.

6.2 ESD Ratings

MIN MAX UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information(2)(3)

THERMAL METRIC(1) RGZ UNIT
48 PINS
RθJA Junction-to-ambient thermal resistance 28.9(5) °C/W
20.4(6)
27.3(7)
20.3(8)
RθJC(top) Junction-to-case (top) thermal resistance 12.9 °C/W
RθJB Junction-to-board thermal resistance 4.0 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 4.0 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.9 °C/W
θJP Junction-to-pad(4) 2(5) °C/W
2(6)
2(7)
2(8)
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).
(3) Connected to GND with 36 thermal vias (0,3 mm diameter).
(4) θJP (Junction – Pad) is used for the QFN Package, because the main heat flow is from the Junction to the GND-Pad of the QFN.
(5) JEDEC Compliant Board (6X6 VIAs on PAD), Ariflow = 0 LFM
(6) JEDEC Compliant Board (6X6 VIAs on PAD) , Airflow = 100 LFM
(7) Recommended Layout (7X7 VIAs on PAD), Airflow = 0 LFM
(8) Recommended Layout (7X7 VIAs on PAD), Airflow = 100 LFM

6.4 Electrical Characteristics

recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
POWER SUPPLY
VCC Supply voltage 3 3.3 3.6 V
VCC_PLL, VCC_IN, VCC_VCO, VCCA Analog supply voltage 3 3.3 3.6
PLVPECL REF at 30.72,MHz, Outputs are LVPECL Output 1 = 491.52 MHz
Output 2 = 245.76 MHz
Output 3 = 122.88 MHz
Output 4 = 61.44 MHz
Output 5 = 30.72 MHz
In case of LVCMOS
Output1 = 245.76 MHz
1.9 W
PLVDS REF at 30.72 MHz, Outputs are LVDS 1.65 W
PLVCMOS REF at 30.72 MHz, Outputs are LVCMOS 1.8 W
POFF REF at 30.72 MHz Dividers are disabled. Outputs are disabled. 0.75 W
PPD Device is powered down 20 mW
DIFFERENTIAL INPUT MODE (PRI_REF, SEC_REF)
VIN Differential input amplitude (VIN – V/IN) 0.1 1.3 V
VIC Common-mode input voltage 1.0 VCC–0.3 V
IIH Differential input current high (no internal termination) VI = VCC, VCC = 3.6 V 20 μA
IIL Differential input current low (no internal termination) VI = 0 V, VCC = 3.6 V –20 20 μA
Input Capacitance on PRI_REF, SEC_REF 3 pF
CRYSTAL INPUT SPECIFICATIONS
On-chip load capacitance 10 pF
Equivalent series resistance (ESR) 50 Ω
LVCMOS INPUT MODE (SPI_CLK, SPI_MOSI, SPI_LE, Power_Down, SYNC, REF_SEL, PRI_REF, SEC_REF )
Low-level input voltage LVCMOS, 0 0.3 x VCC V
High-level input voltage LVCMOS 0.7 x VCC VCC V
VIK LVCMOS input clamp voltage VCC = 3 V, II = –18 mA –1.2 V
IIH LVCMOS input current VI = VCC, VCC = 3.6 V 20 μA
IIL LVCMOS input (Except PRI_REF and SEC_REF) VI = 0 V, VCC = 3.6 V –10 –40 μA
IIL LVCMOS input (PRI_REF and SEC_REF) VI = 0 V, VCC = 3.6 V –10 10 μA
CI Input capacitance VI = 0 V or VCC 3 pF
SPI OUTPUT (MISO) / PLL_LOCK OUTPUT
IOH High-level output current VCC = 3.3 V, VO = 1.65 V –30 mA
IOL Low-level output current VCC = 3.3 V, VO = 1.65 V 33 mA
VOH High-level output voltage for LVCMOS outputs VCC = 3 V, IOH = −100 μA VCC–0.5 V
VOL Low-level output voltage for LVCMOS outputs VCC = 3 V, IOL = 100 μA 0.3 V
CO Output capacitance on MISO VCC = 3.3 V; VO = 0 V or VCC(1) 3 pF
IOZH 3-state output current VO = VCC
VO = 0 V
5 μA
IOZL –5
EEPROM
EEcy Programming cycle of EEPROM 100 1000 Cycles
EEret Data retention 10 Years
VBB
VBB Termination voltage for reference inputs. IBB = –0.2 mA, Depending on the setting. 0.9 1.9 V
INPUT BUFFERS INTERNAL TERMINATION RESISTORS (PRI_REF and SEC_REF)
Termination resistance Single ended 50 Ω
PHASE DETECTOR
fCPmax Charge pump frequency 0.04 40 MHz
LVCMOS OUTPUT / AUXILIARY OUTPUT(1)
fclk Output frequency (see Figure 7) Load = 5 pF to GND 0 250 MHz
VOH High-level output voltage for LVCMOS outputs VCC = min to max IOH = –100 μA VCC –0.5
VOL Low-level output voltage for LVCMOS outputs VCC = min to max IOL =100 µA 0.3 V
IOH High-level output current VCC = 3.3 V VO = 1.65 V –30 mA
IOL Low-level output current VCC = 3.3 V VO = 1.65 V 33 mA
tpho Reference (PRI_REF or SEC_REF) to Output Phase offset Outputs are set to 122.88 MHz, Reference at 30.72 MHz 0.35 ns
tpd(LH)/
tpd(HL)
Propagation delay from PRI_REF or SEC_REF to Outputs Crosspoint to VCC/2, Bypass Mode 4 ns
tsk(o) Skew, output to output For Y0 to Y4 All Outputs set at 200 MHz, Reference = 200 MHz 75 ps
CO Output capacitance on Y0 to Y4 VCC = 3.3 V; VO = 0 V or VCC 5 pF
IOZH 3-State LVCMOS output current VO = VCC 5 μA
IOZL VO = 0 V –5 μA
IOPDH Power Down output current VO = VCC 25 μA
IOPDL VO = 0 V 5 μA
Duty cycle LVCMOS 45% 55%
tslew-rate Output rise/fall slew rate 3.6 5.2 V/ns
LVDS OUTPUT(1)(3)
fclk Output frequency (see Figure 8) Configuration Load 0 800 MHz
|VOD| Differential output voltage RL = 100 Ω 270 550 mV
ΔVOD LVDS VOD magnitude change 50 mV
Offset Voltage 40°C to 85°C 1.24 V
ΔVOS VOS magnitude change 40 mV
Short circuit Vout+ to ground VOUT = 0 27 mA
Short circuit Vout– to ground VOUT = 0 27 mA
tpho Reference (PRI_REF or SEC_REF) to output phase offset Outputs are set to 491.52 MHz
Reference at 30.72 MHz
1.65 ns
tpd(LH)/tpd(HL) Propagation delay from PRI_REF or SEC_REF to outputs Crosspoint to Crosspoint, Bypass Mode 3.1 ns
tsk(o)(2) Skew, output to output For Y0 to Y4 All Outputs set at 200 MHz 25 ps
CO Output capacitance on Y0 to Y4 VCC = 3.3 V; VO = 0 V or VCC 5 pF
IOPDH Power down output current VO = VCC 25 μA
IOPDL Power down output current VO = 0 V 5 μA
Duty cycle 45% 55%
tr / tf Rise and fall time 20% to 80% of VOUT(PP) 110 160 190 ps
LVCMOS-TO-LVDS(4)
tskP_c Output skew between LVCMOS and LVDS outputs VCC/2 to Crosspoint. Output are at the same output frequency and use the same output divider configuration. 0.9 1.4 1.9 ns
LVPECL OUTPUT
fclk Output frequency, Configuration load (see Figure 9 and Figure 10) 0 1500 MHz
VOH LVPECL high-level output voltage load VCC –1.06 VCC –0.88 V
VOL LVPECL low-level output voltage load VCC–2.02 VCC–1.58 V
|VOD| Differential output voltage 610 970 mV
tpho Reference to Output Phase offset Outputs are set to 491.52 MHz, Reference at 30.72 MHz 1.47 ns
tpd(LH)/
tpd(HL)
Propagation delay from PRI_REF or SEC_REF to outputs Crosspoint to Crosspoint, Bypass Mode 3.4 ns
tsk(o) Skew, output to output For Y0 to Y4 All Outputs set at 200 MHz 25 ps
CO Output capacitance on Y0 to Y4 VCC = 3.3 V; VO = 0 V or VCC 5 pF
IOPDH Power Down output current VO = VCC 25 μA
IOPDL VO = 0 V 5 μA
Duty Cycle 45% 55%
tr / tf Rise and fall time 20% to 80% of VOUT(PP) 55 75 135 ps
LVDS-TO-LVPECL
tskP_C Output skew between LVDS and LVPECL outputs Crosspoint to Crosspoint output dividers are configured identically. 0.9 1.1 1.3 ns
LVCMOS-TO-LVPECL
tskP_C Output skew between LVCMOS and LVPECL outputs VCC/2 to Crosspoint output dividers are configured identically. –150 260 700 ps
LVPECL HI-SWING OUTPUT
VOH LVPECL high-level output voltage load VCC –1.11 VCC –0.87 V
VOL LVPECL low-level output voltage load VCC –2.06 VCC –1.73 V
|VOD| Differential output voltage 760 1160 mV
tr / tf Rise and fall time 20% to 80% of VOUT(PP) 55 75 135 ps
(1) All typical values are at VCC = 3.3 V, temperature = 25°C
(2) The tsk(o) specification is only valid for equal loading of all outputs.
(3) The phase of LVCMOS is lagging in reference to the phase of LVDS.
(4) All typical values are at VCC = 3.3 V, temperature = 25°C

6.5 Timing Requirements

over recommended ranges of supply voltage, load and operating free air temperature (unless otherwise noted)
MIN NOM MAX UNIT
PRI_REF/SEC_REF REQUIREMENTS
fmax Maximum Clock Frequency Applied to PRI_REF and SEC_REF in fan-out mode 1500 MHz
Maximum Clock Frequency Applied to Smart Multiplexer input Divider 500 MHz
Maximum Clock Frequency Applied to Reference Divider 250 MHz
For Single ended Inputs ( LVCMOS) on PRI_REF and SEC_REF 250 MHz
Duty cycle of PRI_REF or SEC_REF at VCC / 2 40% 60%
Input Clock Slew Rate (Differential and Single ended) 1 V/ns
Power_Down, SYNC, REF_SEL REQUIREMENTS
tr/ tf Rise and fall time of the Power_Down, SYNC, REF_SEL signal from 20% to 80% of VCC 4 ns

6.6 SPI Bus Timing Characteristics

MIN NOM MAX UNIT
fClock Clock Frequency for the SPI_CLK 20 MHz
t1 SPI_LE to SPI_CLK setup time See Figure 1 and Figure 2 10 ns
t2 SPI_MOSI to SPI_CLK setup time See Figure 1 and Figure 2 10 ns
t3 SPI_MOSI to SPI_CLK hold time See Figure 1 and Figure 2 10 ns
t4 SPI_CLK high duration See Figure 1 and Figure 2 25 ns
t5 SPI_CLK low duration See Figure 1 and Figure 2 25 ns
t6 SPI_CLK to SPI_LE Hold time See Figure 1 and Figure 2 10 ns
t7 SPI_LE Pulse Width See Figure 1 and Figure 2 20 ns
t8 SPI_CLK to MISO data valid See Figure 2 10 ns
t9 SPI_LE to SPI_MISO Data Valid See Figure 2 10 ns
CDCE62005 spi_write_cas862.gif Figure 1. Timing Diagram for SPI Write Command
CDCE62005 spi_read_cas862.gif Figure 2. Timing Diagram for SPI Read Command

6.7 Typical Characteristics

CDCE62005 lvp_outs_cas862.gif
Figure 3. LVPECL Output Swing Vs Frequency
CDCE62005 lvd_outs_cas862.gif
Figure 5. LVDS Output Swing vs Frequency
CDCE62005 his_lvpout_cas862.gif
Figure 4. Hi Swing LVPECL Output Swing vs Frequency
CDCE62005 lvc_outs_cas862.gif
Figure 6. LVCMOS Output Swing vs Frequency