SFFS619 December   2023 MSPM0L1304-Q1 , MSPM0L1305-Q1 , MSPM0L1306-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2MSPM0L Hardware Component Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  5. 4MSPM0L Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1  ADC
    2. 5.2  Comparator
    3. 5.3  OPA
    4. 5.4  CPU
    5. 5.5  RAM
    6. 5.6  FLASH
    7. 5.7  GPIO
    8. 5.8  DMA
    9. 5.9  SPI
    10. 5.10 I2C
    11. 5.11 UART
    12. 5.12 Timers (TIMx)
    13. 5.13 PMU
    14. 5.14 CKM
  7. 6MSPM0L Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1  ADC1,DMA1,COMP1,GPIO2,TIM2,I2C2,IOMUX1,OA1,SPI2,UART2,SYSCTL5,REF1: Periodic read of static configuration registers
      2. 6.3.2  ADC2: Software test of function
      3. 6.3.3  ADC3: ADC trigger overflow check
      4. 6.3.4  ADC4: Window comparator
      5. 6.3.5  OA2: Test of OA using internal DAC8 as a driver
      6. 6.3.6  COMP3: Testing COMP using an external pin
      7. 6.3.7  CPU1: CPU test using software test library
      8. 6.3.8  DMA2: Software test of DMA function
      9. 6.3.9  SYSMEM1: Write to SRAM from CPU, read from DMA
      10. 6.3.10 SYSMEM2: Write to SRAM from DMA, read from CPU
      11. 6.3.11 SYSMEM5: SRAM March test
      12. 6.3.12 FXBAR1: CPU readback of known data from Flash
      13. 6.3.13 FXBAR2: DMA readback of known data from Flash
      14. 6.3.14 FLASH2: CRC check of flash content
      15. 6.3.15 GPIO1: GPIO test using pin IO loopback
      16. 6.3.16 WDT
      17. 6.3.17 TIM1: Software test of function
      18. 6.3.18 I2C1: Software test of I2C function using internal loopback mechanism
      19. 6.3.19 SPI1 : Software test of SPI function
      20. 6.3.20 SPI3: SPI periodic safety message exchange
      21. 6.3.21 UART1: Software test of UART function
      22. 6.3.22 SYSCTL1: MCLK monitor
      23. 6.3.23 SYSCTL8: Brownout Reset (BOR) Supervisor
      24. 6.3.24 SYSCTL9: FCC counter logic to calculate clock frequencies
      25. 6.3.25 SYSCTL10: External voltage monitor
      26. 6.3.26 SYSCTL11: Boot process monitor
      27. 6.3.27 SYSCTL12: Shutdown memory bits parity protection
      28. 6.3.28 SYSCTL14: Brownout Voltage Monitor
      29. 6.3.29 SYSCTL15: External voltage supervisor on VDD
      30. 6.3.30 REF2: Test of VREF using ADC
  8.   A Summary of Recommended Functional Safety Mechanism Usage
  9.   B Distributed Developments
    1.     B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
    2.     B.2 Activities Performed by Texas Instruments
    3.     B.3 Information Provided
  10.   C Revision History

CPU

The CPU subsystem (MCPUSS) implements an Arm Cortex-M0+ CPU, an instruction prefetch and cache, a system timer, and interrupt management features. The Arm Cortex-M0+ is a cost-optimized 32-bit CPU that delivers high performance and low power to embedded applications. Key features of the CPU Sub System include:

  • Arm Cortex-M0+ CPU supports clock frequencies from 32 kHz to 32 MHz
    • ARMv6-M Thumb instruction set (little endian) with single-cycle 32×32 multiply instruction
    • Single-cycle access to GPIO registers through Arm single-cycle IO port
  • Prefetch logic to improve sequential code execution, and I-cache with 2 64-bit cache lines
  • System timer (SysTick) with 24-bit down counter and automatic reload
  • Nested vectored interrupt controller (NVIC) with 4 programmable priority levels and tail chaining
  • Interrupt groups for expanding the total interrupt sources, with jump index for low interrupt latency

For more details, see the CPU chapter of the MSPM0 L-Series 32-MHz Microcontrollers Technical Reference Manual.

The following tests can be applied as functional safety mechanisms for this module (to provide diagnostic coverage on a specific function):