SLAA351A April   2007  – November 2018 MSP430F2232 , MSP430F2232 , MSP430F2234 , MSP430F2234 , MSP430F2252 , MSP430F2252 , MSP430F2254 , MSP430F2254 , MSP430F2272 , MSP430F2272 , MSP430F2274 , MSP430F2274

 

  1.   A Simple Glass-Breakage Detector Using an MSP430™ MCU
    1.     Trademarks
    2. 1 Introduction
    3. 2 Hardware Description
      1. 2.1 Device Specifications
      2. 2.2 Power Supply
      3. 2.3 Microphone
      4. 2.4 LED and Buzzer Alert
      5. 2.5 Interface to CC1100 or CC2500 Devices
      6. 2.6 Operational Amplifiers (OAs)
      7. 2.7 Internal Very-Low-Power Oscillator (VLO)
      8. 2.8 JTAG Interface
      9. 2.9 Current Consumption
    4. 3 Software Description
      1. 3.1 Initialization Routine
      2. 3.2 Timer_A
      3. 3.3 ADC10
      4. 3.4 Signal Analysis
        1. 3.4.1 First Stage of Processing
          1. 3.4.1.1 Signal Averaging, Peak Detection, and Zero Crossings
          2. 3.4.1.2 High-Pass Filtering
        2. 3.4.2 Second Stage of Processing
          1. 3.4.2.1 Frequency Composition Ratio
          2. 3.4.2.2 Peak and Zero-Crossing Count
          3. 3.4.2.3 Glass-Breakage Detect
    5. 4 Hardware Schematic
    6. 5 Test Setup
    7. 6 References
  2.   Revision History

Operational Amplifiers (OAs)

The MSP430F2274 has two OAs that are configurable using software. The gain of these OAs can be set by internal resistor ladder settings. Depending on the choice to have an AAF, one or both of the OAs are used in this application. The first OA (OA0) is used as an inverting amplifier with a gain of 7. The output of OA0 is connected internally to one of the channels of ADC10 for further processing. If the AAF is needed, the output of OA0 is internally connected to OA1, which is configured as a unity-gain low-pass filter. The filter is a second-order Butterworth filter, realized through a Sallen-Key circuit with the 3-dB cutoff set at 19.2 kHz. For both of these OAs, the reference is maintained at the voltage DVCC/2.