SLAA559E April   2014  – November 2016 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2013-EP , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2254 , MSP430F2272 , MSP430F2274 , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430FR5847 , MSP430FR58471 , MSP430FR5848 , MSP430FR5849 , MSP430FR5857 , MSP430FR5858 , MSP430FR5859 , MSP430FR5867 , MSP430FR58671 , MSP430FR5868 , MSP430FR5869 , MSP430FR5870 , MSP430FR5872 , MSP430FR58721 , MSP430FR5887 , MSP430FR5888 , MSP430FR5889 , MSP430FR58891 , MSP430FR5922 , MSP430FR59221 , MSP430FR5947 , MSP430FR59471 , MSP430FR5948 , MSP430FR5949 , MSP430FR5957 , MSP430FR5958 , MSP430FR5959 , MSP430FR5967 , MSP430FR5968 , MSP430FR5969 , MSP430FR59691 , MSP430FR5970 , MSP430FR5972 , MSP430FR59721 , MSP430FR5986 , MSP430FR5987 , MSP430FR5988 , MSP430FR5989 , MSP430FR5989-EP , MSP430FR59891 , MSP430FR5994 , MSP430FR6820 , MSP430FR6822 , MSP430FR68221 , MSP430FR6870 , MSP430FR6872 , MSP430FR68721 , MSP430FR6877 , MSP430FR6879 , MSP430FR68791 , MSP430FR6887 , MSP430FR6888 , MSP430FR6889 , MSP430FR68891 , MSP430FR6920 , MSP430FR6922 , MSP430FR69221 , MSP430FR6927 , MSP430FR69271 , MSP430FR6928 , MSP430FR6970 , MSP430FR6972 , MSP430FR69721 , MSP430FR6977 , MSP430FR6979 , MSP430FR69791 , MSP430FR6987 , MSP430FR6988 , MSP430FR6989 , MSP430FR69891 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2231 , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2553

 

  1.   Migrating from the MSP430F2xx and MSP430G2xx Families to the MSP430FR58xx/FR59xx/68xx/69xx Family
    1.     Trademarks
    2. 1 Introduction
    3. 2 In-System Programming of Nonvolatile Memory
      1. 2.1 Ferroelectric RAM (FRAM) Overview
      2. 2.2 FRAM Cell
      3. 2.3 Protecting FRAM Using the Memory Protection Unit
        1. 2.3.1 Dynamically Partitioning FRAM
      4. 2.4 FRAM Memory Wait States
      5. 2.5 Bootloader (BSL)
      6. 2.6 JTAG and Security
      7. 2.7 Production Programming
    4. 3 Hardware Migration Considerations
    5. 4 Device Calibration Information
    6. 5 Important Device Specifications
    7. 6 Core Architecture Considerations
      1. 6.1 Power Management Module (PMM)
      2. 6.2 Clock System
      3. 6.3 Operating Modes, Wakeup, and Reset
      4. 6.4 Determining the Cause of Reset
      5. 6.5 Interrupt Vectors
      6. 6.6 FRAM and the FRAM Controller
        1. 6.6.1 Flash and FRAM Overview Comparison
        2. 6.6.2 Cache Architecture
      7. 6.7 RAM Controller (RAMCTL)
    8. 7 Peripheral Considerations
      1. 7.1 Watchdog Timer
      2. 7.2 Ports
        1. 7.2.1 Digital Input/Output
        2. 7.2.2 Capacitive Touch I/O
      3. 7.3 Analog-to-Digital Converters
        1. 7.3.1 ADC12 to ADC12_B
        2. 7.3.2 ADC10 to ADC12_B
      4. 7.4 REF_A Module
      5. 7.5 Comparator_A to Comparator_E
      6. 7.6 Hardware Multiplier (HWMPY32)
      7. 7.7 DMA Controller
      8. 7.8 Low-Energy Accelerator (LEA) for Signal Processing
      9. 7.9 Communication Modules
        1. 7.9.1 USI to eUSCI
        2. 7.9.2 USCI to eUSCI
    9. 8 Conclusion
    10. 9 References
  2.   Revision History

JTAG and Security

On F2xx devices, the JTAG port is secured by blowing a physical fuse on one of the JTAG lines by subjecting it to a high voltage through a special procedure. This action is irreversible, and further access to the device is only possible through the BSL.

On the FR59xx devices, the physical fuse has been replaced by a programmable JTAG fuse. Securing the device involves writing a specific signature to the JTAG signature location. When the fuse is programmed, access to the device is only possible through the BSL (using the BSL password). However, when the BSL password is supplied, it is possible to clear the JTAG fuse and make JTAG communication available once again. Hence, on the FR59xx devices, blowing the JTAG fuse is reversible if the BSL password is known.

The FR59xx family also provides an addition feature: JTAG lock with password. The password is located at FRAM location 0xFF88 and can be one to four words in length. To be able to access JTAG, the tool chain needs to first provide the password, following which JTAG access is granted. Any access with an incorrect password prevents JTAG access. When a password is verified, complete JTAG access is possible until the next BOR event.

When using the IAR Embedded Workbench™ IDE, the option for providing the JTAG password is described in the IAR Embedded Workbench C-SPY Debugging Guide for MSP430 Microcontroller Family, which is available in the IAR installation directory under \430\doc.

When using the Code Composer Studio IDE v5.2 or higher, this option is available by editing the MSP430Fxxx.CCXML file under Target Configurations in the Advanced Setup Section, Advanced target Configuration. The procedure is described in the Code Composer Studio User's Guide for MSP430.