SLAU533D September   2013  – April 2017

 

  1.   MSP430F5529 LaunchPad™ Development Kit (MSP‑EXP430F5529LP)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Key Features
      2. 1.2 Kit Contents
      3. 1.3 Out-of-Box Experience
        1. 1.3.1 Step 1: Install a Software Development Platform
        2. 1.3.2 Step 2: Connect the Hardware
        3. 1.3.3 Step 3: Verify the storage volume has been loaded
        4. 1.3.4 Step 4: Open a text editor, and press the buttons
        5. 1.3.5 Step 5: Customize the strings
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430F5529
        2. 2.2.2 eZ-FET lite Onboard Emulator
        3. 2.2.3 Integrated Full-Speed USB Hub
        4. 2.2.4 Power
        5. 2.2.5 Clocking
        6. 2.2.6 Application (or "Backchannel") UART
        7. 2.2.7 Emulator and Target Isolation Jumper Block
        8. 2.2.8 Isolation Jumper Block: 3.3-V and 5-V Jumpers
        9. 2.2.9 Isolation Jumper Block: Emulator Connection and Application UART
      3. 2.3 Measure Current Draw of MSP430 MCU
      4. 2.4 Using an External Power Source
        1. 2.4.1 External 3.3-V Power Source
        2. 2.4.2 External 5-V Power Source Without USB Connection
        3. 2.4.3 External 5-V Power Source With USB Connection
      5. 2.5 Using the eZ-FET lite Emulator With a Different Target
      6. 2.6 USB BSL Button
      7. 2.7 BoosterPack Plug-in Module Pinout
      8. 2.8 Design Files
      9. 2.9 Hardware Change Log
    4. 3 Software Examples
      1. 3.1 MSP430 Software Libraries: driverlib and the USB API
      2. 3.2 Viewing the Code
        1. 3.2.1 CCS
        2. 3.2.2 IAR
      3. 3.3 Example Project Software Organization
      4. 3.4 USB Configuration Files
      5. 3.5 Out-of-Box Experience: emulStorageKeyboard
        1. 3.5.1  Flowchart
        2. 3.5.2  Pre-Initialization
        3. 3.5.3  Initialization
          1. 3.5.3.1 Configuring the Keyboard
          2. 3.5.3.2 Configuring the MSC Interface
        4. 3.5.4  Handling SCSI Commands
        5. 3.5.5  LPM0 Entry
        6. 3.5.6  LPM0 Exit
        7. 3.5.7  Emulated Storage Volume
        8. 3.5.8  Sending Data as a USB Keyboard
        9. 3.5.9  Properly Handling USB Unplug Events
        10. 3.5.10 Non-Maskable Interrupt (NMI) Vector
      6. 3.6 Example: simpleUsbBackchannel
        1. 3.6.1 What It Does
        2. 3.6.2 Installing the CDC Interface
        3. 3.6.3 Operating the Example
        4. 3.6.4 Backchannel UART Library: bcUart.c, bcUart.h
        5. 3.6.5 Code Description: Initialization
          1. 3.6.5.1 Stopping the Watchdog
          2. 3.6.5.2 Configuring VCORE
          3. 3.6.5.3 Configuring Clocks
          4. 3.6.5.4 Configuring Ports
          5. 3.6.5.5 Initializing the Backchannel UART
          6. 3.6.5.6 Configuring USB
        6. 3.6.6 Code Description: Main Loop
        7. 3.6.7 Modifying to Use an HID-Datapipe Interface
      7. 3.7 Starting Device Manager
    5. 4 Additional Resources
      1. 4.1 LaunchPad Development Kit Websites
      2. 4.2 Information on the MSP430F5529
      3. 4.3 Download CCS, IAR, mspgcc, or Energia
      4. 4.4 USB Developers Package
      5. 4.5 MSP430Ware and TI Resource Explorer
      6. 4.6 F5529 Code Examples
      7. 4.7 MSP430 Application Notes
      8. 4.8 TI E2E Community
      9. 4.9 Community at Large
    6. 5 FAQs
    7. 6 Schematics
  2.   Revision History

Measure Current Draw of MSP430 MCU

The following steps assume that the target F5529 is to be powered from the USB host, not from an external power source.

  1. Remove the 3V3 jumper in the isolation jumper block. Attach an ammeter across this jumper.
  2. Consider the effect that the backchannel UART and any circuitry attached to the F5529 may have on current draw. Maybe these should be disconnected, or their current sinking and sourcing capability at least considered in the final measurement.
  3. Make sure there are no floating input I/Os. These cause unnecessary extra current draw. Every I/O should either be driven out or, if an input, should be pulled or driven to a high or low level.
  4. Begin target F5529 execution.
  5. Measure the current. (Keep in mind that if the current levels are fluctuating, it may be difficult to get a stable measurement. It is easier to measure quiescent states.)

This measurement does not include USB current, which is sourced through the 5V jumper instead. USB current levels can vary widely, depending on whether the connection is active or suspended, how much bus activity is happening, how long the cable is, and other factors.

If you are trying to achieve the LPM3 values shown in the F5529 data sheet and are having trouble, download the F5529 code examples and see MSP430F552x_LPM3_01.c, adjusting the I/O settings for your application.