SLAU802 March   2019

 

  1.   MSP430FR2476 LaunchPad™ Development Kit (LP‑MSP430FR2476)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Introduction
      2. 1.2 Key Features
      3. 1.3 What’s Included
        1. 1.3.1 Kit Contents
        2. 1.3.2 Software Examples
      4. 1.4 First Steps: Out-of-Box Experience
        1. 1.4.1 Connecting to the Computer
        2. 1.4.2 Running the Out-of-Box Experience (OOBE)
      5. 1.5 Next Steps: Looking Into the Provided Code
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430FR2476 MCU
        2. 2.2.2 eZ-FET Onboard Debug Probe With EnergyTrace™ Technology
        3. 2.2.3 Debug Probe Connection: Isolation Jumper Block
        4. 2.2.4 Application (or Backchannel) UART
        5. 2.2.5 Special Features
          1. 2.2.5.1 TMP235 Temperature Sensor
          2. 2.2.5.2 CR2032 Coin Cell Battery
      3. 2.3 Power
        1. 2.3.1 eZ-FET USB Power
        2. 2.3.2 CR2032 Battery Power
        3. 2.3.3 BoosterPack Plug-in Module and External Power Supply
      4. 2.4 Measure Current Draw of the MSP430 MCU
      5. 2.5 Clocking
      6. 2.6 Using the eZ-FET Debug Probe With a Different Target
      7. 2.7 BoosterPack Plug-in Module Pinout
      8. 2.8 Design Files
        1. 2.8.1 Hardware
        2. 2.8.2 Software
      9. 2.9 Hardware Change Log
    4. 3 Software Examples
      1. 3.1 Out-of-Box Software Example
        1. 3.1.1 Source File Structure
        2. 3.1.2 Overview
      2. 3.2 Blink LED Example
        1. 3.2.1 Source File Structure
    5. 4 Resources
      1. 4.1 Integrated Development Environments
        1. 4.1.1 TI Cloud Development Tools
          1. 4.1.1.1 TI Resource Explorer Cloud
          2. 4.1.1.2 Code Composer Studio Cloud
        2. 4.1.2 Code Composer Studio IDE
        3. 4.1.3 IAR Embedded Workbench for MSP430 IDE
      2. 4.2 LaunchPad Development Kit Websites
      3. 4.3 MSP430Ware and TI Resource Explorer
      4. 4.4 FRAM Utilities
        1. 4.4.1 Compute Through Power Loss
        2. 4.4.2 Nonvolatile Storage (NVS)
      5. 4.5 MSP430FR2476 MCU
        1. 4.5.1 Device Documentation
        2. 4.5.2 MSP430FR2476 Code Examples
        3. 4.5.3 MSP430 Application Notes and TI Designs
      6. 4.6 Community Resources
        1. 4.6.1 TI E2E Community
        2. 4.6.2 Community at Large
    6. 5 FAQ
    7. 6 Schematics

MSP430FR2476 MCU

The MSP430FR2476 is an ultra-low-power MSP430FRx FRAM-based microcontroller (MCU), which offer extended data logging and security capabilities. The MSP430FR2476 offers the small LQFP package (7 mm × 7 mm) in the FRAM microcontroller portfolio, combined with a variety of integrated peripherals and ultra-low power consumption. FRAM is a cutting edge memory technology, combining the best features of flash and RAM into one nonvolatile memory. For more information on FRAM, visit www.ti.com/fram.

Device features include:

  • 1.8-V to 3.6-V operation
  • 16-bit RISC architecture up to 16-MHz system clock and 8-MHz FRAM access
  • 64KB of program FRAM, 512 bytes of information FRAM, and 8KB of RAM
  • 12-channel 12-bit ADC
  • One enhanced comparator with integrated 6-bit DAC as reference voltage
  • Four 16-bit timers with three capture/compare registers (Timer_B3)
  • One 16-bit timer with seven capture/compare registers (Timer_B7)
  • One 16-bit counter-only RTC
  • 16-bit cyclic redundancy check (CRC)
  • 43 GPIOs
SLASO5_PINOUT_LQFP48C.gifFigure 4. MSP430FR2476 Pinout