SLAZ096Z October   2012  – May 2021 CC430F5145

 

  1. 1Functional Advisories
  2. 2Preprogrammed Software Advisories
  3. 3Debug Only Advisories
  4. 4Fixed by Compiler Advisories
  5. 5Nomenclature, Package Symbolization, and Revision Identification
    1. 5.1 Device Nomenclature
    2. 5.2 Package Markings
      1.      RGZ48
    3. 5.3 Memory-Mapped Hardware Revision (TLV Structure)
  6. 6Advisory Descriptions
    1. 6.1  ADC39
    2. 6.2  ADC42
    3. 6.3  ADC69
    4. 6.4  AES1
    5. 6.5  BSL7
    6. 6.6  BSL14
    7. 6.7  COMP10
    8. 6.8  CPU21
    9. 6.9  CPU22
    10. 6.10 CPU36
    11. 6.11 CPU40
    12. 6.12 CPU46
    13. 6.13 CPU47
    14. 6.14 DMA4
    15. 6.15 DMA7
    16. 6.16 DMA10
    17. 6.17 EEM17
    18. 6.18 EEM19
    19. 6.19 EEM23
    20. 6.20 JTAG26
    21. 6.21 JTAG27
    22. 6.22 PMM11
    23. 6.23 PMM12
    24. 6.24 PMM14
    25. 6.25 PMM15
    26. 6.26 PMM18
    27. 6.27 PMM20
    28. 6.28 PMM26
    29. 6.29 PORT15
    30. 6.30 PORT19
    31. 6.31 PORT29
    32. 6.32 RF1A1
    33. 6.33 RF1A2
    34. 6.34 RF1A3
    35. 6.35 RF1A5
    36. 6.36 RF1A6
    37. 6.37 RF1A8
    38. 6.38 SYS12
    39. 6.39 SYS16
    40. 6.40 UCS11
    41. 6.41 USCI26
    42. 6.42 USCI30
    43. 6.43 USCI34
    44. 6.44 USCI35
    45. 6.45 USCI39
    46. 6.46 USCI40
  7. 7Revision History

RF1A3

RF1A Module

Category

Functional

Function

Extra Byte Transmitted in TX

Description

If a transmission is aborted (exits TX mode) during the transmission of the first half of any byte, there will be a repetition of the first byte in the next transmission. This issue is caused by a state machine controlling the mod_rd_data signal in the modulator. This signal asserts at the start of transmission of each full byte, then deasserts after half the byte has been transmitted. If the transmission is aborted after a byte has started but before half the byte is transmitted this signal remains asserted and the first byte in the next transmission is repeated.

Workaround

As long as the packet handling features of the CC430 are used, this is not a problem since the chip always exits TX mode after the transmission of the last bit in the last byte of the packet. If, however, one disables the packet handling features (MDMCFG2.SYNC_MODE=0) and wants to exit TX mode manually by strobing IDLE, one should make sure that the IDLE strobe is being issued after clocking out 12 dummy bits (8 dummy bits are necessary due to the TX latency, but since this would mean that transmission is aborted within the first half of a byte, 4 extra bits are added).